- •1, 4, 6, 7 – Узлы; 2, 3, 5, 8 – точки соединения элементов; 1–4, 4–6, 4–7, 6–7,
- •Законы Ома и Кирхгофа
- •Режимы работы электрических цепей
- •Эквивалентные преобразования последовательного, параллельного и смешанного соединений с r-элементами
- •Преобразование схем соединения сопротивлений «звезда» и «треугольник»
- •Лекция 2 Классификация цепей и особенности их расчета
- •Метод прямого применения законов Кирхгофа
- •Метод наложения (суперпозиции)
- •Метод контурных токов
- •Метод эквивалентного генератора
- •Метод узловых напряжений (метод двух узлов)
- •Уравнение баланса мощностей электрической цепи
- •Потенциальная диаграмма
- •Векторное изображение синусоидальных эдс, напряжений и токов
- •Комплексный метод расчета электрических цепей синусоидального тока
- •Законы Ома и Кирхгофа в комплексной форме
- •Пассивные элементы в цепи синусоидального тока
- •Цепь с резистивным элементом
- •Лекция 4
- •Цепь с последовательным соединением резистивного и индуктивного элементов
- •Цепь с емкостным элементом
- •Цепь с последовательным соединением резистивного и емкостного элементов
- •Электрическая цепь с последовательным соединением элементов с r, l, c
- •Треугольники напряжений, сопротивлений и мощностей
- •Резонанс напряжений
- •Лекция №6. Цепь с параллельным соединением резистивного, индуктивного и емкостного элементов
- •Треугольники токов и проводимостей
- •Параллельное соединение нескольких электроприемников
- •Резонанс токов
- •Цепь со смешанным соединением резистивного, индуктивного и емкостного элементов
- •Мощность однофазной цепи синусоидального тока
- •Методика расчета однофазных цепей синусоидального тока
- •Лекция 7
- •Соединение обмоток генератора и фаз приемника звездой
- •Трехфазный приемник, соединенный по схеме «звезда»
- •Соединение фаз приемника по схеме «треугольник»
- •Определение мощности и коэффициента мощности трехфазного приемника
- •Подключение катушки индуктивности с r, l к сети с постоянным напряжением
- •Переходные процессы при заряде и разряде конденсатора
- •Цепи периодического несинусоидального тока Причины возникновения периодических несинусоидальных эдс, токов и напряжений. Представление функций рядом Фурье
- •Действующее значение несинусоидальных электрических величин
- •Мощность электрической цепи при несинусоидальных напряжениях и токах
- •Лекция 10 основы электроники
- •Лекция 11 Полупроводниковые резисторы, диоды, транзисторы
- •Полевые транзисторы
- •Тиристоры
- •Интегральные микросхемы (имс)
- •Лекция 13
- •Т рехфазный мостовой управляемый выпрямитель (ув).
- •Сглаживающие фильтры
- •Усилители на биполярных и полевых транзисторах
- •Усилительный каскад на биполярном транзисторе с общим эмиттером
- •Графоаналитический анализ работы каскада на биполярном транзисторе с общим эмиттером
- •Амплитудная, амплитудно-частотная и фазочастотная характеристики каскада усилителя с общим эмиттером
- •Температурная стабилизация
- •Понятие о многокаскадных усилителях напряжения
- •Усилительные каскады на полевых транзисторах с общим истоком
- •Режимы работы усилительных каскадов
- •Лекция 15 Усилители мощности
- •Обратные связи в усилителях
- •Балансный усилительный каскад (дифференициальный каскад)
- •Лекция 16 Операцинные усилители
- •Примеры построения аналоговых схем на операционном усилителе
- •Импульсные устройства
- •Ключевой режим работы транзистора
- •Импульсный (нелинейный) режим работы операционного усилителя. Компараторы
- •Мультивибраторы
- •Элементы вычислительных машин Основные логические операции и их реализация на базе микросхем
- •Триггеры
- •Регистры
- •Лекция 18 трансформаторы.
- •Опыт короткого замыкания
- •Уравнения и схема замещения трансформатора. Приведенный трансформатор
- •Лекция 19 Параметры приведенной вторичной обмотки и схема замещения трансформатора. Приведенный трансформатор
- •Векторная диаграмма трансформатора
- •Внешняя характеристика и коэффициент полезного действия трансформатора
- •Измерительные трансформаторы
- •Лекция 20 Трехфазные трансформаторы
- •Лекция 21. Асинхронные машины Устройство трехфазного асинхронного двигателя
- •Принцип работы асинхронного двигателя
- •Электродвижущая сила и электромагнитный момент асинхронного двигателя
- •Анализ механической характеристики асинхронного двигателя
- •Лекция 22. Способы торможения асинхронных двигателей
- •Особенности новых серий двигателей
- •Лекция 24 синхронные машины Устройство и типы синхронных машин
- •Синхронный генератор
- •Лекция 25 Принцип работы и пуск синхронного двигателя
- •Электромагнитный момент синхронного двигателя. Угловая и механическая характеристики
- •Регулирование коэффициента мощности
- •Достоинства и недостатки синхронных двигателей
- •Лекция 26 машины постоянного тока Принцип работы и устройство машин постоянного тока
- •Электродвижущая сила и электромагнитный момент машины постоянного тока
- •Лекция 27 Реакция якоря
- •Коммутация машин постоянного тока
- •Генератор постоянного тока с независимым возбуждением
- •Генераторы постоянного тока с самовозбуждением
- •Лекция 28 Типы возбуждения и механические характеристики двигателей постоянного тока
- •ППуск двигателей постоянного тока
- •Регулирование частоты вращения двигателя постоянного тока
- •Торможение двигателей постоянного тока
- •Рабочие характеристики двигателя постоянного тока
- •Лекция 29 основы электропривода Электропривод и его классификация
- •Механические характеристики производственных механизмов и эд
- •Нагревание и охлаждение двигателя
- •Лекция 30 выбор электродвигателя
- •Нагрузочные диаграммы и номинальные режимы электродвигательного устройства
- •Расчет мощности двигателя
- •Лекция 32 управление электроприводом
- •Основы электроснабжения
- •Категории электроприемников и их электроснабжение
- •Содержание и порядок разработки проекта системы электроснабжения
- •Определение установленной мощности понизительной трансформаторной подстанции Расчетная максимальная мощность трансформаторной подстанции
- •Коэффициенты спроса и мощности основных электроустановок
- •Средневзвешенный коэффициент мощности и мощность компенсатора
- •Минимальное количество трансформаторов и установленная номинальная мощность понизительных трансформаторных подстанций
- •Понятия об учете и нормировании электроэнергии Учет электрической энергии
- •Системы оплаты электрической энергии
- •Общезаводские нормы расхода электроэнергии (фрагмент)
- •Лекция 34 коэффициент мощности действующей электроустановки и способы его улучшения
- •Понятия о центре электрических нагрузок и выборе места расположения понизительных трансформаторных подстанций
- •Расчет установленной мощности понизительной трансформаторной подстанции и исследование технико-экономических показателей ее трансформаторов в естественных и искусственных условиях
- •Суммарные нагрузки на птп
- •Алгоритм исследования
- •Расчетные нагрузки на трансформатор птп
- •Выводы и обобщения
- •Литература
Лекция 25 Принцип работы и пуск синхронного двигателя
Схема полей статора и ротора син- хронного двигателя
В режиме двигателя статор машины подключается к трехфазной сети, в обмотку возбуждения через щетки и кольца подается постоянный ток возбуждения. Как и в асинхронном двигателе, токи обмоток якоря создают вращающееся магнитное поле статора, а ток возбуждения – неподвижный относительно ротора поток возбуждения. Принцип действия синхронного двигателя основан на явлении притяжения северного и южного полюсов магнитных полей – статора и ротора. Если обеспечить условия для электромагнитного сцепления разноименных полюсов статора и ротора, то в дальнейшем поле статора и ротор будут вращаться с одинаковой частотой n (синхронно), причем поле статора будет ведущим, а ротор – ведомым
(S-полюс якоря «тянет» за собой N-полюс ротора).
Рассмотрим работу синхронного двигателя, начиная с момента пуска. Пусть одновременно подается питание в обмотки якоря и обмотку возбуждения. Так как у поля статора практически отсутствует момент инерции (вращаются только силовые линии поля), то оно мгновенно набирает синхронную скорость вращения. Из-за высокой линейной скорости полюсов поля якоря и значительного момента инерции ротора полюсы ротора не успевают сцепиться с разноименными полюсами поля якоря и пуск двигателя не происходит.
Для осуществления пуска необходимо предварительно раскрутить ротор до частоты вращения, близкой к синхронной.
Асинхронный пуск синхронного двигателя
Схема асинхронного пуска синхронного двигателя
Наиболее распространен способ «асинхронного» пуска, при котором ротор содержит дополнительную пусковую короткозамкнутую обмотку из медных или латунных стержней. При отсутствии этой дополнительной обмотки асинхронный пуск включает следующие действия. Вначале обесточенная обмотка возбуждения замыкается на реостат Rп ≈ 10Rв, где Rв – сопротивление обмотки возбуждения, т. е. переключатель SA1 находится в положении 1. Цель подключения Rп – избежать при пуске наведения в обмотке возбуждения значительной ЭДС, опасной для изоляции обмотки. Затем обмотка якоря выключателем QF1 подключается к трехфазной сети, в результате чего за счет замкнутой на Rп обмотки ротора двигатель разгоняется как асинхронный. При достижении частоты вращения ротора не менее 95% от синхронной частоты вращения поля выключатель SA1 переводят в положение 2, т. е. обмотку возбуждения отключают от Rп и подключают к источнику с напряжением Uв (возбудителю). Так как частота вращения полюсов ротора близка к частоте поля якоря, то наблюдается электромагнитное сцепление полей ротора и статора, двигатель втягивается в синхронизм и работает как синхронный.
Электромагнитный момент синхронного двигателя. Угловая и механическая характеристики
Анализ синхронного двигателя проведем, пренебрегая потерями в обмотках якоря и в стали и считая, что магнитная цепь машины не насыщена. В двигательном режиме ток якоря потребляется из сети, ЭДС E0 направлена навстречу току Iя (противоЭДС E0). Схема замещения фазной обмотки якоря показана на рисунке а и для нее:
U; ( = E; (0 + jXснI; (я.
Схема замещения обмотки якоря (а)
и векторная диаграмма (б)
синхронного двига-
теля
В двигательном режиме ось поля ротора отстает на угол нагрузки θ от оси поля статора. Аналогично противо-ЭДС E0 отстает по фазе на угол θ от напряжения статора U .
Если пренебречь потерями, то можно приближенно считать, что механическая мощность Pмех на валу двигателя равна активной мощности P, потребляемой двигателем из сети, т. е.
,
где M – вращающий электромагнитный момент двигателя; W = πn/30 – угловая скорось ротора; U – фазное напряжение статора. Поскольку проекции векторов E; (0 и jXснI; (я на горизонтальную ось одинаковы, т. е. XснIяcosj = E0sinq, то для M
.
Зависимость M = f(θ) при U = const называют угловой характеристикой машины. Угловая характеристика (рис. 3.49) устойчива только в диапазоне –90° < θ < 90°, область θ > 0 соответствует двигательному режиму, а область θ < 0 – генераторному.
Угловая характеристики
синхрон ного
двигателя
Механическая
характеристика син-
хронного
двигателя
Механическая характеристика n = f(M) синхронного двигателя в режиме синхронизма (при Mс < Mmax) абсолютно жесткая, частота вращения не зависит от Mс. Если нагрузить двигатель так, что момент сопротивления Mс > Mmax, то θ превысит 90° и рабочая точка окажется на неустойчивом участке угловой характеристики, на которой у двигателя отсутствует свойство саморегулирования момента. В результате двигатель выйдет из синхронизма, что может привести к тяжелой аварии в сети. Поэтому в номинальном режиме устанавливают θном = 25÷35°, что обеспечивает запас по моменту KM = Mmax/Mном = = 2÷2,4.
