
- •1, 4, 6, 7 – Узлы; 2, 3, 5, 8 – точки соединения элементов; 1–4, 4–6, 4–7, 6–7,
- •Законы Ома и Кирхгофа
- •Режимы работы электрических цепей
- •Эквивалентные преобразования последовательного, параллельного и смешанного соединений с r-элементами
- •Преобразование схем соединения сопротивлений «звезда» и «треугольник»
- •Лекция 2 Классификация цепей и особенности их расчета
- •Метод прямого применения законов Кирхгофа
- •Метод наложения (суперпозиции)
- •Метод контурных токов
- •Метод эквивалентного генератора
- •Метод узловых напряжений (метод двух узлов)
- •Уравнение баланса мощностей электрической цепи
- •Потенциальная диаграмма
- •Векторное изображение синусоидальных эдс, напряжений и токов
- •Комплексный метод расчета электрических цепей синусоидального тока
- •Законы Ома и Кирхгофа в комплексной форме
- •Пассивные элементы в цепи синусоидального тока
- •Цепь с резистивным элементом
- •Лекция 4
- •Цепь с последовательным соединением резистивного и индуктивного элементов
- •Цепь с емкостным элементом
- •Цепь с последовательным соединением резистивного и емкостного элементов
- •Электрическая цепь с последовательным соединением элементов с r, l, c
- •Треугольники напряжений, сопротивлений и мощностей
- •Резонанс напряжений
- •Лекция №6. Цепь с параллельным соединением резистивного, индуктивного и емкостного элементов
- •Треугольники токов и проводимостей
- •Параллельное соединение нескольких электроприемников
- •Резонанс токов
- •Цепь со смешанным соединением резистивного, индуктивного и емкостного элементов
- •Мощность однофазной цепи синусоидального тока
- •Методика расчета однофазных цепей синусоидального тока
- •Лекция 7
- •Соединение обмоток генератора и фаз приемника звездой
- •Трехфазный приемник, соединенный по схеме «звезда»
- •Соединение фаз приемника по схеме «треугольник»
- •Определение мощности и коэффициента мощности трехфазного приемника
- •Подключение катушки индуктивности с r, l к сети с постоянным напряжением
- •Переходные процессы при заряде и разряде конденсатора
- •Цепи периодического несинусоидального тока Причины возникновения периодических несинусоидальных эдс, токов и напряжений. Представление функций рядом Фурье
- •Действующее значение несинусоидальных электрических величин
- •Мощность электрической цепи при несинусоидальных напряжениях и токах
- •Лекция 10 основы электроники
- •Лекция 11 Полупроводниковые резисторы, диоды, транзисторы
- •Полевые транзисторы
- •Тиристоры
- •Интегральные микросхемы (имс)
- •Лекция 13
- •Т рехфазный мостовой управляемый выпрямитель (ув).
- •Сглаживающие фильтры
- •Усилители на биполярных и полевых транзисторах
- •Усилительный каскад на биполярном транзисторе с общим эмиттером
- •Графоаналитический анализ работы каскада на биполярном транзисторе с общим эмиттером
- •Амплитудная, амплитудно-частотная и фазочастотная характеристики каскада усилителя с общим эмиттером
- •Температурная стабилизация
- •Понятие о многокаскадных усилителях напряжения
- •Усилительные каскады на полевых транзисторах с общим истоком
- •Режимы работы усилительных каскадов
- •Лекция 15 Усилители мощности
- •Обратные связи в усилителях
- •Балансный усилительный каскад (дифференициальный каскад)
- •Лекция 16 Операцинные усилители
- •Примеры построения аналоговых схем на операционном усилителе
- •Импульсные устройства
- •Ключевой режим работы транзистора
- •Импульсный (нелинейный) режим работы операционного усилителя. Компараторы
- •Мультивибраторы
- •Элементы вычислительных машин Основные логические операции и их реализация на базе микросхем
- •Триггеры
- •Регистры
- •Лекция 18 трансформаторы.
- •Опыт короткого замыкания
- •Уравнения и схема замещения трансформатора. Приведенный трансформатор
- •Лекция 19 Параметры приведенной вторичной обмотки и схема замещения трансформатора. Приведенный трансформатор
- •Векторная диаграмма трансформатора
- •Внешняя характеристика и коэффициент полезного действия трансформатора
- •Измерительные трансформаторы
- •Лекция 20 Трехфазные трансформаторы
- •Лекция 21. Асинхронные машины Устройство трехфазного асинхронного двигателя
- •Принцип работы асинхронного двигателя
- •Электродвижущая сила и электромагнитный момент асинхронного двигателя
- •Анализ механической характеристики асинхронного двигателя
- •Лекция 22. Способы торможения асинхронных двигателей
- •Особенности новых серий двигателей
- •Лекция 24 синхронные машины Устройство и типы синхронных машин
- •Синхронный генератор
- •Лекция 25 Принцип работы и пуск синхронного двигателя
- •Электромагнитный момент синхронного двигателя. Угловая и механическая характеристики
- •Регулирование коэффициента мощности
- •Достоинства и недостатки синхронных двигателей
- •Лекция 26 машины постоянного тока Принцип работы и устройство машин постоянного тока
- •Электродвижущая сила и электромагнитный момент машины постоянного тока
- •Лекция 27 Реакция якоря
- •Коммутация машин постоянного тока
- •Генератор постоянного тока с независимым возбуждением
- •Генераторы постоянного тока с самовозбуждением
- •Лекция 28 Типы возбуждения и механические характеристики двигателей постоянного тока
- •ППуск двигателей постоянного тока
- •Регулирование частоты вращения двигателя постоянного тока
- •Торможение двигателей постоянного тока
- •Рабочие характеристики двигателя постоянного тока
- •Лекция 29 основы электропривода Электропривод и его классификация
- •Механические характеристики производственных механизмов и эд
- •Нагревание и охлаждение двигателя
- •Лекция 30 выбор электродвигателя
- •Нагрузочные диаграммы и номинальные режимы электродвигательного устройства
- •Расчет мощности двигателя
- •Лекция 32 управление электроприводом
- •Основы электроснабжения
- •Категории электроприемников и их электроснабжение
- •Содержание и порядок разработки проекта системы электроснабжения
- •Определение установленной мощности понизительной трансформаторной подстанции Расчетная максимальная мощность трансформаторной подстанции
- •Коэффициенты спроса и мощности основных электроустановок
- •Средневзвешенный коэффициент мощности и мощность компенсатора
- •Минимальное количество трансформаторов и установленная номинальная мощность понизительных трансформаторных подстанций
- •Понятия об учете и нормировании электроэнергии Учет электрической энергии
- •Системы оплаты электрической энергии
- •Общезаводские нормы расхода электроэнергии (фрагмент)
- •Лекция 34 коэффициент мощности действующей электроустановки и способы его улучшения
- •Понятия о центре электрических нагрузок и выборе места расположения понизительных трансформаторных подстанций
- •Расчет установленной мощности понизительной трансформаторной подстанции и исследование технико-экономических показателей ее трансформаторов в естественных и искусственных условиях
- •Суммарные нагрузки на птп
- •Алгоритм исследования
- •Расчетные нагрузки на трансформатор птп
- •Выводы и обобщения
- •Литература
Внешняя характеристика и коэффициент полезного действия трансформатора
Внешней характеристикой трансформатора называют зависимость вторичного напряжения U2 от тока нагрузки I2 при заданном коэффициенте мощности нагрузки cosφн и номинальном первичном напряжении U1ном. Ток I2 задают не в абсолютных, а в относительных единицах β = I2/I2ном = I1/I1ном, где β – коэффициент загрузки трансформатора. Изменение напряжения на выходе трансформатора DU, %:
определяет вид внешней характеристики:
.
Внешние
характеристики (а)
и КПД
трансформатора (б)
При активной и активно-индуктивной нагрузке наблюдается падение напряжения U2 с ростом I2, а для активно-емкостной нагрузки напряжение U2 может расти с ростом I2 .
КПД трансформатора
η = = 1 – ,
где P2 – активная мощность, потребляемая нагрузкой; P1 – активная мощность, потребляемая трансформатором из сети; ∆P = ∆Pст + ∆Pм – сумма мощностей потерь в стали сердечника и меди обмоток.
Для расчета η используют
.
Типичный ход кривой η(β) показан на рисунке. КПД максимален при b = .
Измерительные трансформаторы
Измерительные трансформаторы делят на трансформаторы напряжения и трансформаторы тока. Их используют для включения измерительных приборов и устройств автоматической защиты в цепи высокого напряжения. При этом достигаются две цели: 1) благодаря отсутствию гальванической связи приборов с цепями высокого напряжения повышается безопасность работы персонала; 2) увеличиваются пределы измерения измерительных приборов переменного тока.
Трансформатор напряжения (ТН) применяют для включения вольтметров, реле и обмоток напряжения измерительных приборов (ваттметров, фазометров, счетчиков, частотомеров).
Поскольку сопротивление вольтметра велико, то ТН практически работает в режиме холостого хода и
.
Измерив U2 и зная коэффициент трансформации Kн, можно определить высокое напряжение U1 (шкалу вольтметра градуируют в значениях U1). Одноименные выводы первичной и вторичной обмоток трансформатора маркированы: А и а, Х и х. Соблюдение полярности подключения важно для приборов, реагирующих на изменение фазы напряжения (ваттметр, счетчик).
Вторичное номинальное напряжение ТН, как правило, равно 100 В.
Классом точности называют наибольшее допустимое значение в процентах основной погрешности прибора. Стационарные трансформаторы напряжения имеют классы точности 0,5; 1,0; 3,0. Число приборов, подключаемых параллельно вторичной обмотке ТН, при заданном классе точности ограничено (погрешность измерений ниже при режиме, близком к холостому ходу).
Трансформатор тока (ТТ) применяют для подключения амперметров и токовых обмоток других измерительных приборов.
Первичная обмотка ТТ имеет небольшое количество витков w1 и включается в разрыв линии с измеряемым током I1. Первичная обмотка условно изображается в виде отрезка проводника с зажимами W1, W2. Ко вторичной обмотке ТТ, число витков которой w2 >> w1, последовательно подключается амперметр. Поскольку сопротивление амперметра мало, то ТТ работает в режиме, близком к режиму короткого замыкания. В отличие от силовых трансформаторов первичная обмотка ТТ, имеющая малое комплексное сопротивление, подключается последовательно с потребителем, и ток I; (1 определяется только потребителем. Можно считать, что ТТ подключен к источнику тока J; ( = I; (1. Вторичный ток İ2 трансформатора тока оказывает, как и в силовом трансформаторе, размагничивающее действие. Однако компенсирующего роста тока I1 здесь нет, поэтому рабочая намагничивающая сила F; (p = = I; (1w1 – I; (2w2 мала и в точных ТТ составляет десятые доли процента от I; (1w1. Пренебрегая величиной Fp, получим
,
где Kт = w1/w2.
Поскольку w1 << w2, то измеренный ток I2 << I1. После измерения I2 ток I1 вычисляется по (3.29). Обычно у амперметра I2ном = 5 А, и при работе со штатным ТТ его шкалу градуируют в значениях первичного тока.
Трансформаторы тока имеют классы точности 0,2; 0,5; 1; 3; 10. Работа их тем точнее, чем ближе режим к режиму короткого замыкания. Поэтому для ТТ указывается наибольшее суммарное сопротивление приборов, подключаемых последовательно ко вторичной обмотке. При работе ТТ недопустим разрыв в цепи вторичной обмотки, так как это прекращает ее размагничивающее действие, магнитный поток Ф в магнитопроводе резко возрастает, что может привести к перегреву ТТ и выходу его из строя. Одновременно с ростом Ф происходит резкое увеличение ЭДС E2 во вторичной обмотке (до нескольких тысяч вольт), что опасно для обслуживающего персонала.
На следующем рисунке показано подключение нескольких приборов (амперметра, вольтметра и ваттметра) к ТН и ТТ, которая позволяет получить полную информацию о электрических параметрах однофазного напряжения. Для получения активной мощности цепи нужно показание ваттметра умножить на Kн/Kт.
. Схема подключения амперметра,
вольтметра, ваттметра к трансформаторам
тока и напряжения