- •1, 4, 6, 7 – Узлы; 2, 3, 5, 8 – точки соединения элементов; 1–4, 4–6, 4–7, 6–7,
- •Законы Ома и Кирхгофа
- •Режимы работы электрических цепей
- •Эквивалентные преобразования последовательного, параллельного и смешанного соединений с r-элементами
- •Преобразование схем соединения сопротивлений «звезда» и «треугольник»
- •Лекция 2 Классификация цепей и особенности их расчета
- •Метод прямого применения законов Кирхгофа
- •Метод наложения (суперпозиции)
- •Метод контурных токов
- •Метод эквивалентного генератора
- •Метод узловых напряжений (метод двух узлов)
- •Уравнение баланса мощностей электрической цепи
- •Потенциальная диаграмма
- •Векторное изображение синусоидальных эдс, напряжений и токов
- •Комплексный метод расчета электрических цепей синусоидального тока
- •Законы Ома и Кирхгофа в комплексной форме
- •Пассивные элементы в цепи синусоидального тока
- •Цепь с резистивным элементом
- •Лекция 4
- •Цепь с последовательным соединением резистивного и индуктивного элементов
- •Цепь с емкостным элементом
- •Цепь с последовательным соединением резистивного и емкостного элементов
- •Электрическая цепь с последовательным соединением элементов с r, l, c
- •Треугольники напряжений, сопротивлений и мощностей
- •Резонанс напряжений
- •Лекция №6. Цепь с параллельным соединением резистивного, индуктивного и емкостного элементов
- •Треугольники токов и проводимостей
- •Параллельное соединение нескольких электроприемников
- •Резонанс токов
- •Цепь со смешанным соединением резистивного, индуктивного и емкостного элементов
- •Мощность однофазной цепи синусоидального тока
- •Методика расчета однофазных цепей синусоидального тока
- •Лекция 7
- •Соединение обмоток генератора и фаз приемника звездой
- •Трехфазный приемник, соединенный по схеме «звезда»
- •Соединение фаз приемника по схеме «треугольник»
- •Определение мощности и коэффициента мощности трехфазного приемника
- •Подключение катушки индуктивности с r, l к сети с постоянным напряжением
- •Переходные процессы при заряде и разряде конденсатора
- •Цепи периодического несинусоидального тока Причины возникновения периодических несинусоидальных эдс, токов и напряжений. Представление функций рядом Фурье
- •Действующее значение несинусоидальных электрических величин
- •Мощность электрической цепи при несинусоидальных напряжениях и токах
- •Лекция 10 основы электроники
- •Лекция 11 Полупроводниковые резисторы, диоды, транзисторы
- •Полевые транзисторы
- •Тиристоры
- •Интегральные микросхемы (имс)
- •Лекция 13
- •Т рехфазный мостовой управляемый выпрямитель (ув).
- •Сглаживающие фильтры
- •Усилители на биполярных и полевых транзисторах
- •Усилительный каскад на биполярном транзисторе с общим эмиттером
- •Графоаналитический анализ работы каскада на биполярном транзисторе с общим эмиттером
- •Амплитудная, амплитудно-частотная и фазочастотная характеристики каскада усилителя с общим эмиттером
- •Температурная стабилизация
- •Понятие о многокаскадных усилителях напряжения
- •Усилительные каскады на полевых транзисторах с общим истоком
- •Режимы работы усилительных каскадов
- •Лекция 15 Усилители мощности
- •Обратные связи в усилителях
- •Балансный усилительный каскад (дифференициальный каскад)
- •Лекция 16 Операцинные усилители
- •Примеры построения аналоговых схем на операционном усилителе
- •Импульсные устройства
- •Ключевой режим работы транзистора
- •Импульсный (нелинейный) режим работы операционного усилителя. Компараторы
- •Мультивибраторы
- •Элементы вычислительных машин Основные логические операции и их реализация на базе микросхем
- •Триггеры
- •Регистры
- •Лекция 18 трансформаторы.
- •Опыт короткого замыкания
- •Уравнения и схема замещения трансформатора. Приведенный трансформатор
- •Лекция 19 Параметры приведенной вторичной обмотки и схема замещения трансформатора. Приведенный трансформатор
- •Векторная диаграмма трансформатора
- •Внешняя характеристика и коэффициент полезного действия трансформатора
- •Измерительные трансформаторы
- •Лекция 20 Трехфазные трансформаторы
- •Лекция 21. Асинхронные машины Устройство трехфазного асинхронного двигателя
- •Принцип работы асинхронного двигателя
- •Электродвижущая сила и электромагнитный момент асинхронного двигателя
- •Анализ механической характеристики асинхронного двигателя
- •Лекция 22. Способы торможения асинхронных двигателей
- •Особенности новых серий двигателей
- •Лекция 24 синхронные машины Устройство и типы синхронных машин
- •Синхронный генератор
- •Лекция 25 Принцип работы и пуск синхронного двигателя
- •Электромагнитный момент синхронного двигателя. Угловая и механическая характеристики
- •Регулирование коэффициента мощности
- •Достоинства и недостатки синхронных двигателей
- •Лекция 26 машины постоянного тока Принцип работы и устройство машин постоянного тока
- •Электродвижущая сила и электромагнитный момент машины постоянного тока
- •Лекция 27 Реакция якоря
- •Коммутация машин постоянного тока
- •Генератор постоянного тока с независимым возбуждением
- •Генераторы постоянного тока с самовозбуждением
- •Лекция 28 Типы возбуждения и механические характеристики двигателей постоянного тока
- •ППуск двигателей постоянного тока
- •Регулирование частоты вращения двигателя постоянного тока
- •Торможение двигателей постоянного тока
- •Рабочие характеристики двигателя постоянного тока
- •Лекция 29 основы электропривода Электропривод и его классификация
- •Механические характеристики производственных механизмов и эд
- •Нагревание и охлаждение двигателя
- •Лекция 30 выбор электродвигателя
- •Нагрузочные диаграммы и номинальные режимы электродвигательного устройства
- •Расчет мощности двигателя
- •Лекция 32 управление электроприводом
- •Основы электроснабжения
- •Категории электроприемников и их электроснабжение
- •Содержание и порядок разработки проекта системы электроснабжения
- •Определение установленной мощности понизительной трансформаторной подстанции Расчетная максимальная мощность трансформаторной подстанции
- •Коэффициенты спроса и мощности основных электроустановок
- •Средневзвешенный коэффициент мощности и мощность компенсатора
- •Минимальное количество трансформаторов и установленная номинальная мощность понизительных трансформаторных подстанций
- •Понятия об учете и нормировании электроэнергии Учет электрической энергии
- •Системы оплаты электрической энергии
- •Общезаводские нормы расхода электроэнергии (фрагмент)
- •Лекция 34 коэффициент мощности действующей электроустановки и способы его улучшения
- •Понятия о центре электрических нагрузок и выборе места расположения понизительных трансформаторных подстанций
- •Расчет установленной мощности понизительной трансформаторной подстанции и исследование технико-экономических показателей ее трансформаторов в естественных и искусственных условиях
- •Суммарные нагрузки на птп
- •Алгоритм исследования
- •Расчетные нагрузки на трансформатор птп
- •Выводы и обобщения
- •Литература
Опыт короткого замыкания
Опыт короткого
заыкания: а – схема
включения;
б – схема
замещения
Опыт проводится при пониженном напряжении U1к, которое устанавливается экспериментально: при отключенном напряжении на входе замыкают накоротко зажимы вторичной обмотки. Затем медленно увеличивают U1 до значения U1к, при котором показание амперметра равно I1ном. Ваттметр измеряет мощность потерь в режиме короткого замыкания Pк. Поскольку X0, R0 существенно больше сопротивлений обмоток, то ток I1к = I1ном практически замыкается по внешнему контуру на рис. 3.8, б. Мощность потерь
Рк = (R1 + R2;() I1;2ном = 2R2;(I1;2ном, откуда R2;( = R1 = Pк/(2I1; 2ном); R2 = R2;(/n2.
Сопротивление Rк = R1 + R2;( называют активным сопротивлением короткого замыкания.
Полное сопротивление короткого замыкания: Zк = U1к/I1к ;
Уравнения и схема замещения трансформатора. Приведенный трансформатор
Помимо основного магнитного потока Ф, замыкающегося по магнитопроводу, катушки создают небольшие потоки рассеяния Ф1s и Ф2s, замыкающиеся по воздуху. Воздух является линейной средой для магнитного поля, поэтому в схеме замещения трансформатора потоки рассеяния обмоток учитывают в виде линейных индуктивностей рассеяния L1s, L2s (рис. б). На схеме замещения активные сопротивления R1, R2 обмоток условно показаны вне обмоток, а обмотки на рис. , б не имеют активного сопротивления, не создают потоков рассеяния и вместе с магнитопроводом образуют так называемый идеализированный трансформатор. Для первичного и вторичного контуров схемы замещения (рис. б) по ВЗК получим
Сечение проводников обмоток выбирают так, чтобы R1, R2 были малы. Сердечники трансформаторов изготавливают из стали с высокой магнитной проницательностью, используют плотную намотку витков и максимально близкое расположение катушек (обмотку ВН наматывают поверх обмотки НН). Такие меры снижают потоки рассеяния и учитывающие их индуктивности рассеяния. Поэтому второе и третье слагаемые в (3.5) и (3.6) составляют несколько процентов от U1 и U2 (кроме трансформаторов с P < 1 кВт). Тогда можно полагать
;
.
Из постоянства амплитуды потока Фm, согласно закону полного тока, следует постоянство МДС:
w1I; (1 – w2I; (2 = w1I; (0.
Это равенство справедливо и для мгновенных значений:
w1i1 – w2i2 = w1i0.
Равенства приводятся к виду
I; (1 = I; (0 +; i1 = i0 +.
Следует, что ток I; (1 состоит из тока I; (0 (намагничивающего тока), определяющего основной магнитный поток Ф, и тока I; (2/n, компенсирующего размагничивающее действие тока вторичной обмотки. Ток холостого хода I0 составляет 3¸10% от номинального первичного тока I1. Если пренебречь I0, то
.
То есть коэффициент трансформации можно определять по отношению токов.
Лекция 19 Параметры приведенной вторичной обмотки и схема замещения трансформатора. Приведенный трансформатор
Неравенство витков первичной и вторичной обмоток усложняет расчет электрических цепей, элементами которых является трансформатор, т. к.:
-трансформаторы соединяют разные участки электрических цепей электромагнитным путем, электрически эти участки не связаны, т. к. w1не равно w2, то и не равны Е1 и Е2. Если в электрической цепи n трансформаторов, то n раз приходится изменять по значению ток и напряжение ;
- при передаче электрической энергии имеются потери напряжения в 1-ой и 2-ой обмотках . Эти потери отличаются друг от друга в десятки раз, т. к. в десятки раз отличаются токи обмоток, а также не равны и сопротивления. Поэтому для упрощения расчетов обе обмотки трансформатора приводят к одному и тому же числу витков.
Магнитная связь между обмотками усложняет анализ трансформаторов. Для его упрощения составляют эквивалентную электрическую схему, в которой магнитная связь заменяется гальванической. Получил распространение способ приведения вторичной обмотки трансформатора к первичной.
,
,
то можно считать, что напряжение во вторичную цепь передается непосредственно с первичной обмотки . На этом рисунке X1 = ωL1s, X2 = ωL2s – реактивные сопротивления рассеяния обмоток.
Операция приведения увеличивает ЭДС E2 в n раз.
Для сохранения мощностей всех элементов вторичной цепи ее параметры нужно пересчитать так, чтобы ток I2 уменьшился в n раз, т. е. I; (2;( = I; (2/n. Это означает, что входное сопротивление вторичной цепи
должно увеличиться в n2 раз. Тогда для получения приведенных сопротивлений сопротивления всех элементов вторичной цепи нужно увеличить в n2 раз:
;
;
.
Таким образом следует, что ток ветви с элементами X0, R0 равен намагничивающему току İ0 (эту ветвь называют намагничивающей). Сопротивление R0 введено с целью учета тепловых потерь в сердечнике за счет гистерезиса и вихревых токов. Параметры X0, R0 определяются экспериментально, из опыта холостого хода.
УРАВНЕНИЯ ЭДС, МДС и ТОКОВ ТРАНСФОРМАТОРА.
Из постоянства амплитуды потока Фm, следует постоянство МДС:
w1I; (1 – w2I; (2 = w1I; (0.
Это равенство справедливо и для мгновенных значений:
w1i1 – w2i2 = w1i0.
Разделив правую и левую части уравнения на w1, получаем уравнение токов:
I; (1 = I; (0 + İ2/n; i1 = i0 + i2/n.
Таким образом, ток I; (1 состоит из тока I; (0 (намагничивающего тока), определяющего основной магнитный поток Ф, и тока I; (2/n, компенсирующего размагничивающее действие тока вторичной обмотки. Ток холостого хода I0 составляет 3¸10% от номинального первичного тока I1. Если пренебречь I0, то
Если пренебречь I0, то
I; (1 İ2/n
По второму закону Кирхгофа для приведенной схемы можно составить следующие уравнения:
.
