- •1, 4, 6, 7 – Узлы; 2, 3, 5, 8 – точки соединения элементов; 1–4, 4–6, 4–7, 6–7,
- •Законы Ома и Кирхгофа
- •Режимы работы электрических цепей
- •Эквивалентные преобразования последовательного, параллельного и смешанного соединений с r-элементами
- •Преобразование схем соединения сопротивлений «звезда» и «треугольник»
- •Лекция 2 Классификация цепей и особенности их расчета
- •Метод прямого применения законов Кирхгофа
- •Метод наложения (суперпозиции)
- •Метод контурных токов
- •Метод эквивалентного генератора
- •Метод узловых напряжений (метод двух узлов)
- •Уравнение баланса мощностей электрической цепи
- •Потенциальная диаграмма
- •Векторное изображение синусоидальных эдс, напряжений и токов
- •Комплексный метод расчета электрических цепей синусоидального тока
- •Законы Ома и Кирхгофа в комплексной форме
- •Пассивные элементы в цепи синусоидального тока
- •Цепь с резистивным элементом
- •Лекция 4
- •Цепь с последовательным соединением резистивного и индуктивного элементов
- •Цепь с емкостным элементом
- •Цепь с последовательным соединением резистивного и емкостного элементов
- •Электрическая цепь с последовательным соединением элементов с r, l, c
- •Треугольники напряжений, сопротивлений и мощностей
- •Резонанс напряжений
- •Лекция №6. Цепь с параллельным соединением резистивного, индуктивного и емкостного элементов
- •Треугольники токов и проводимостей
- •Параллельное соединение нескольких электроприемников
- •Резонанс токов
- •Цепь со смешанным соединением резистивного, индуктивного и емкостного элементов
- •Мощность однофазной цепи синусоидального тока
- •Методика расчета однофазных цепей синусоидального тока
- •Лекция 7
- •Соединение обмоток генератора и фаз приемника звездой
- •Трехфазный приемник, соединенный по схеме «звезда»
- •Соединение фаз приемника по схеме «треугольник»
- •Определение мощности и коэффициента мощности трехфазного приемника
- •Подключение катушки индуктивности с r, l к сети с постоянным напряжением
- •Переходные процессы при заряде и разряде конденсатора
- •Цепи периодического несинусоидального тока Причины возникновения периодических несинусоидальных эдс, токов и напряжений. Представление функций рядом Фурье
- •Действующее значение несинусоидальных электрических величин
- •Мощность электрической цепи при несинусоидальных напряжениях и токах
- •Лекция 10 основы электроники
- •Лекция 11 Полупроводниковые резисторы, диоды, транзисторы
- •Полевые транзисторы
- •Тиристоры
- •Интегральные микросхемы (имс)
- •Лекция 13
- •Т рехфазный мостовой управляемый выпрямитель (ув).
- •Сглаживающие фильтры
- •Усилители на биполярных и полевых транзисторах
- •Усилительный каскад на биполярном транзисторе с общим эмиттером
- •Графоаналитический анализ работы каскада на биполярном транзисторе с общим эмиттером
- •Амплитудная, амплитудно-частотная и фазочастотная характеристики каскада усилителя с общим эмиттером
- •Температурная стабилизация
- •Понятие о многокаскадных усилителях напряжения
- •Усилительные каскады на полевых транзисторах с общим истоком
- •Режимы работы усилительных каскадов
- •Лекция 15 Усилители мощности
- •Обратные связи в усилителях
- •Балансный усилительный каскад (дифференициальный каскад)
- •Лекция 16 Операцинные усилители
- •Примеры построения аналоговых схем на операционном усилителе
- •Импульсные устройства
- •Ключевой режим работы транзистора
- •Импульсный (нелинейный) режим работы операционного усилителя. Компараторы
- •Мультивибраторы
- •Элементы вычислительных машин Основные логические операции и их реализация на базе микросхем
- •Триггеры
- •Регистры
- •Лекция 18 трансформаторы.
- •Опыт короткого замыкания
- •Уравнения и схема замещения трансформатора. Приведенный трансформатор
- •Лекция 19 Параметры приведенной вторичной обмотки и схема замещения трансформатора. Приведенный трансформатор
- •Векторная диаграмма трансформатора
- •Внешняя характеристика и коэффициент полезного действия трансформатора
- •Измерительные трансформаторы
- •Лекция 20 Трехфазные трансформаторы
- •Лекция 21. Асинхронные машины Устройство трехфазного асинхронного двигателя
- •Принцип работы асинхронного двигателя
- •Электродвижущая сила и электромагнитный момент асинхронного двигателя
- •Анализ механической характеристики асинхронного двигателя
- •Лекция 22. Способы торможения асинхронных двигателей
- •Особенности новых серий двигателей
- •Лекция 24 синхронные машины Устройство и типы синхронных машин
- •Синхронный генератор
- •Лекция 25 Принцип работы и пуск синхронного двигателя
- •Электромагнитный момент синхронного двигателя. Угловая и механическая характеристики
- •Регулирование коэффициента мощности
- •Достоинства и недостатки синхронных двигателей
- •Лекция 26 машины постоянного тока Принцип работы и устройство машин постоянного тока
- •Электродвижущая сила и электромагнитный момент машины постоянного тока
- •Лекция 27 Реакция якоря
- •Коммутация машин постоянного тока
- •Генератор постоянного тока с независимым возбуждением
- •Генераторы постоянного тока с самовозбуждением
- •Лекция 28 Типы возбуждения и механические характеристики двигателей постоянного тока
- •ППуск двигателей постоянного тока
- •Регулирование частоты вращения двигателя постоянного тока
- •Торможение двигателей постоянного тока
- •Рабочие характеристики двигателя постоянного тока
- •Лекция 29 основы электропривода Электропривод и его классификация
- •Механические характеристики производственных механизмов и эд
- •Нагревание и охлаждение двигателя
- •Лекция 30 выбор электродвигателя
- •Нагрузочные диаграммы и номинальные режимы электродвигательного устройства
- •Расчет мощности двигателя
- •Лекция 32 управление электроприводом
- •Основы электроснабжения
- •Категории электроприемников и их электроснабжение
- •Содержание и порядок разработки проекта системы электроснабжения
- •Определение установленной мощности понизительной трансформаторной подстанции Расчетная максимальная мощность трансформаторной подстанции
- •Коэффициенты спроса и мощности основных электроустановок
- •Средневзвешенный коэффициент мощности и мощность компенсатора
- •Минимальное количество трансформаторов и установленная номинальная мощность понизительных трансформаторных подстанций
- •Понятия об учете и нормировании электроэнергии Учет электрической энергии
- •Системы оплаты электрической энергии
- •Общезаводские нормы расхода электроэнергии (фрагмент)
- •Лекция 34 коэффициент мощности действующей электроустановки и способы его улучшения
- •Понятия о центре электрических нагрузок и выборе места расположения понизительных трансформаторных подстанций
- •Расчет установленной мощности понизительной трансформаторной подстанции и исследование технико-экономических показателей ее трансформаторов в естественных и искусственных условиях
- •Суммарные нагрузки на птп
- •Алгоритм исследования
- •Расчетные нагрузки на трансформатор птп
- •Выводы и обобщения
- •Литература
Регистры
Это устройства для передачи, преобразования, записи и хранения двоичных чисел или других кодовых комбинаций. В зависимости от функционального назначения различают регистры сдвига и регистры памяти. Основные элементы регистра – двоичные ячейки, в качестве которых используются триггеры, обладающие «памятью».
Рассмотрим схему четырехразрядного сдвигающего регистра на IK-триггерах.
Схема и обозначение сдвигающего регистра
С
приходом каждого тактового импульса
на входы С
происходит ступенчатая передача
(продвижение) сигналов с прямых и
инверсных выходов на информационные
входы каждого последующего триггера,
от младшего разряда к старшему. Пусть
требуется записать в регистр
четырехразрядное двоичное число Д =
1101 ( Д1
=
1; Д2
=
1; Д3
=
0; Д4
=
= 1). При С
= 1
в триггер Т1 вводятся
и K1
=
0.
По окончании синхроимпульса ( при
переходе от С
= 1 к С
= 0) на выходе триггера Т1 появляется
,
.
Затем на вход регистра поступает второй
разряд
числа Д. При поступлении второго тактового
импульса триггер Т2 примет информацию
с выхода первого триггера
;
.
По окончании второго тактового импульса:
;
;
;
.
Таким образом, информация сдвинулась
из первого разряда регистра во второй.
Так же после третьего тактового импульса:
;
;
;
после четвертого:
;
;
;
и все число Д = 1101 записано в регистр.
Лекция 18 трансформаторы.
Трансформатором называют статическое электромагнитное устройство, имеющее две или более индуктивно связанных обмоток и предназначенное для преобразования переменного напряжения (тока) одной величины в переменное напряжение (тока) другой величины той же частоты. Трансформаторы применяются в электротехнике, электронике, электросвязи, устройствах автоматики и контроля. Различают силовые, измерительные, сварочные и специальные трансформаторы. По числу фаз трансформаторы делят на одно- и трехфазные.
Однофазный трансформатор
Устройство. Трансформатор состоит из сердечника (магнитопровода) и обмоток.
М
агнитопровод
предназначен для усиления индуктивной
связи между обмотками и для низких
частот собирается из покрытых лаком
пластин электротехнической стали
толщиной 0,35 – 0,5 мм. Такая конструкция
позволяет уменьшить вихревые токи,
наводимые переменным магнитным полем.
Первичная обмотка подключается к
источнику питания. Все связанные с ней
величины отмечают индексом 1.
Обмотку, к которой подключается приемник,
называют вторичной, и все относящиеся
к ней величины снабжают индексом 2.
Одна из этих обмоток является обмоткой
высшего напряжения (ВН), другая – низшего
(НН). Если первичное напряжение U1
меньше вторичного U2,
то трансформатор называют повышающим;
если U1 > U2
– понижающим.
. Трансформатор:
а – конструкция;
б – схема
замещения
Структурно-логическая схема:
Ф1σ→
Е1σ
Е1
U1
→
I10
→
I10w1
→
Ф1х
Е2
Нагрузочный режим трансформатора
Замкнем ключ во вторичной цепи, т. е. установим рабочий режим. Под действием ЭДС взаимоиндукции во вторичной цепи появится ток i2. МДС i2w2 создает магнитный поток Ф2, который для указанных на рис. 1, а направлений намотки витков и положительных направлений токов i1, i2 устремлен навстречу потоку Ф1х, что соответствует правилу Ленца. Это явление называют размагничивающим действием вторичного тока. Результирующий магнитный поток Ф в правильно сконструированном трансформаторе практически зависит только от амплитуды U1m напряжения источника, поэтому размагничивающее действие вторичного тока компенсируется возрастанием тока (и потока) первичной обмотки от значения i0 до некоторого рабочего значения i1. Тогда результирующий (рабочий) поток Ф ≈ Ф1х создается результирующей МДС i1w1 – i2w2 ≈ i0w1. Рабочий поток Ф создает в первичной обмотке ЭДС самоиндукции е1 и во вторичной обмотке ЭДС взаимоиндукции е2:
.
Напряжению источника u1(t) = U1msinωt соответствует магнитный поток
,
где Φm = U1m/(ωw1) – амплитуда магнитного потока.
Таким образом, амплитуда Φm основного потока определяется амплитудой питающего напряжения и остается почти неизменной в режимах от холостого хода до номинального.
Определим ЭДС e1, e2
.
Действующие значения ЭДС первичной и вторичной обмоток:
.
Коэффициентом трансформации n трансформатора называют отношение
.
При повышающем трансформаторе w2 > w1, при понижающем - w1> w2 .Для получения нескольких значений вторичного напряжения, на тот же магнитопровод наматывают несколько вторичных обмоток с разным числом витков.
На практике коэффициентом трансформации называют отношение номинального высшего напряжения трансформатора к номинальному низшему (под номинальным понимают напряжение в режиме холостого хода). Тогда коэффициент трансформации
n = ,
и для любого трансформатора n ≥ 1
Таким образом, при подключении первичной обмотки трансформатора к источнику питания переменного напряжения на зажимах вторичной обмотки индуцируется переменная ЭДС Е2 и вторичная обмотка становится источником питания, к которой подключаются приемники.
Опыт холостого хода
В лаборатории проводят опыты холостого хода и короткого замыкания с целью определения коэффициента трансформации, потерь в трансформаторе и параметров схемы замещения.
Опыт холостого
хода трансформатора: а – схема
включения; б – схема
замещения
Опыт холостого хода в лаборатории проводят согласно схемы рис. , а. Как видно из рис. а схема содержит амперметр, ваттметр и два вольтметра. Большое внутреннее сопротивление вольтметра PV2 практически обеспечивает режим холостого хода (I2 ≈ 0). В опыте холостого хода на первичную обмотку подается номинальное напряжение U1ном, а вторичная обмотка разомкнута (I2=0). Показание амперметра РА1 равнI0, а ваттметр измеряет мощность потерь при холостом ходе Px. Приведем порядок расчета параметров трансформатора по U1ном, I0, P0, U2x согласно схемы замещения на рис. б.
Находим коэффициент трансформации n = U1ном/U2х. У реальных трансформаторов R1 = R2;( << R0, X1 = X2;( << X0, поэтому мощность Px практически определяется только потерями в R0:
Px = R0I0 ; 2 = U1ном I0 cos jx
Отсюда находим R0 и cosφх.
R0 = Px /I0 ; 2 ; cosφх.= Px /U1ном I0
Находим полное сопротивление цепи:
Zх = U1ном/I1х = [(R1+R0)2 + (Х1 + Х0)2]0,5 (R02 + X02)0,5
Получаем X0 = .
Угол магнитных потерь δ равен
δ = p/2 – jx, или δ = arctg(R0/X0).
