
- •1, 4, 6, 7 – Узлы; 2, 3, 5, 8 – точки соединения элементов; 1–4, 4–6, 4–7, 6–7,
- •Законы Ома и Кирхгофа
- •Режимы работы электрических цепей
- •Эквивалентные преобразования последовательного, параллельного и смешанного соединений с r-элементами
- •Преобразование схем соединения сопротивлений «звезда» и «треугольник»
- •Лекция 2 Классификация цепей и особенности их расчета
- •Метод прямого применения законов Кирхгофа
- •Метод наложения (суперпозиции)
- •Метод контурных токов
- •Метод эквивалентного генератора
- •Метод узловых напряжений (метод двух узлов)
- •Уравнение баланса мощностей электрической цепи
- •Потенциальная диаграмма
- •Векторное изображение синусоидальных эдс, напряжений и токов
- •Комплексный метод расчета электрических цепей синусоидального тока
- •Законы Ома и Кирхгофа в комплексной форме
- •Пассивные элементы в цепи синусоидального тока
- •Цепь с резистивным элементом
- •Лекция 4
- •Цепь с последовательным соединением резистивного и индуктивного элементов
- •Цепь с емкостным элементом
- •Цепь с последовательным соединением резистивного и емкостного элементов
- •Электрическая цепь с последовательным соединением элементов с r, l, c
- •Треугольники напряжений, сопротивлений и мощностей
- •Резонанс напряжений
- •Лекция №6. Цепь с параллельным соединением резистивного, индуктивного и емкостного элементов
- •Треугольники токов и проводимостей
- •Параллельное соединение нескольких электроприемников
- •Резонанс токов
- •Цепь со смешанным соединением резистивного, индуктивного и емкостного элементов
- •Мощность однофазной цепи синусоидального тока
- •Методика расчета однофазных цепей синусоидального тока
- •Лекция 7
- •Соединение обмоток генератора и фаз приемника звездой
- •Трехфазный приемник, соединенный по схеме «звезда»
- •Соединение фаз приемника по схеме «треугольник»
- •Определение мощности и коэффициента мощности трехфазного приемника
- •Подключение катушки индуктивности с r, l к сети с постоянным напряжением
- •Переходные процессы при заряде и разряде конденсатора
- •Цепи периодического несинусоидального тока Причины возникновения периодических несинусоидальных эдс, токов и напряжений. Представление функций рядом Фурье
- •Действующее значение несинусоидальных электрических величин
- •Мощность электрической цепи при несинусоидальных напряжениях и токах
- •Лекция 10 основы электроники
- •Лекция 11 Полупроводниковые резисторы, диоды, транзисторы
- •Полевые транзисторы
- •Тиристоры
- •Интегральные микросхемы (имс)
- •Лекция 13
- •Т рехфазный мостовой управляемый выпрямитель (ув).
- •Сглаживающие фильтры
- •Усилители на биполярных и полевых транзисторах
- •Усилительный каскад на биполярном транзисторе с общим эмиттером
- •Графоаналитический анализ работы каскада на биполярном транзисторе с общим эмиттером
- •Амплитудная, амплитудно-частотная и фазочастотная характеристики каскада усилителя с общим эмиттером
- •Температурная стабилизация
- •Понятие о многокаскадных усилителях напряжения
- •Усилительные каскады на полевых транзисторах с общим истоком
- •Режимы работы усилительных каскадов
- •Лекция 15 Усилители мощности
- •Обратные связи в усилителях
- •Балансный усилительный каскад (дифференициальный каскад)
- •Лекция 16 Операцинные усилители
- •Примеры построения аналоговых схем на операционном усилителе
- •Импульсные устройства
- •Ключевой режим работы транзистора
- •Импульсный (нелинейный) режим работы операционного усилителя. Компараторы
- •Мультивибраторы
- •Элементы вычислительных машин Основные логические операции и их реализация на базе микросхем
- •Триггеры
- •Регистры
- •Лекция 18 трансформаторы.
- •Опыт короткого замыкания
- •Уравнения и схема замещения трансформатора. Приведенный трансформатор
- •Лекция 19 Параметры приведенной вторичной обмотки и схема замещения трансформатора. Приведенный трансформатор
- •Векторная диаграмма трансформатора
- •Внешняя характеристика и коэффициент полезного действия трансформатора
- •Измерительные трансформаторы
- •Лекция 20 Трехфазные трансформаторы
- •Лекция 21. Асинхронные машины Устройство трехфазного асинхронного двигателя
- •Принцип работы асинхронного двигателя
- •Электродвижущая сила и электромагнитный момент асинхронного двигателя
- •Анализ механической характеристики асинхронного двигателя
- •Лекция 22. Способы торможения асинхронных двигателей
- •Особенности новых серий двигателей
- •Лекция 24 синхронные машины Устройство и типы синхронных машин
- •Синхронный генератор
- •Лекция 25 Принцип работы и пуск синхронного двигателя
- •Электромагнитный момент синхронного двигателя. Угловая и механическая характеристики
- •Регулирование коэффициента мощности
- •Достоинства и недостатки синхронных двигателей
- •Лекция 26 машины постоянного тока Принцип работы и устройство машин постоянного тока
- •Электродвижущая сила и электромагнитный момент машины постоянного тока
- •Лекция 27 Реакция якоря
- •Коммутация машин постоянного тока
- •Генератор постоянного тока с независимым возбуждением
- •Генераторы постоянного тока с самовозбуждением
- •Лекция 28 Типы возбуждения и механические характеристики двигателей постоянного тока
- •ППуск двигателей постоянного тока
- •Регулирование частоты вращения двигателя постоянного тока
- •Торможение двигателей постоянного тока
- •Рабочие характеристики двигателя постоянного тока
- •Лекция 29 основы электропривода Электропривод и его классификация
- •Механические характеристики производственных механизмов и эд
- •Нагревание и охлаждение двигателя
- •Лекция 30 выбор электродвигателя
- •Нагрузочные диаграммы и номинальные режимы электродвигательного устройства
- •Расчет мощности двигателя
- •Лекция 32 управление электроприводом
- •Основы электроснабжения
- •Категории электроприемников и их электроснабжение
- •Содержание и порядок разработки проекта системы электроснабжения
- •Определение установленной мощности понизительной трансформаторной подстанции Расчетная максимальная мощность трансформаторной подстанции
- •Коэффициенты спроса и мощности основных электроустановок
- •Средневзвешенный коэффициент мощности и мощность компенсатора
- •Минимальное количество трансформаторов и установленная номинальная мощность понизительных трансформаторных подстанций
- •Понятия об учете и нормировании электроэнергии Учет электрической энергии
- •Системы оплаты электрической энергии
- •Общезаводские нормы расхода электроэнергии (фрагмент)
- •Лекция 34 коэффициент мощности действующей электроустановки и способы его улучшения
- •Понятия о центре электрических нагрузок и выборе места расположения понизительных трансформаторных подстанций
- •Расчет установленной мощности понизительной трансформаторной подстанции и исследование технико-экономических показателей ее трансформаторов в естественных и искусственных условиях
- •Суммарные нагрузки на птп
- •Алгоритм исследования
- •Расчетные нагрузки на трансформатор птп
- •Выводы и обобщения
- •Литература
Трехфазный приемник, соединенный по схеме «звезда»
Симметричный
трехфазный приемник –
это приемник, у которого комплексные
сопротивления фаз равны между собой
,
т. е. у такого
приемника равны между собой модули
и аргументы
фазных сопротивлений
– Za
= Zв
= Zc,
а
=
в
=
с.
Трехфазный приемник, соединенный по схеме «звезда»
Из формулы следует, что при равенстве комплексных проводимостей фаз междуузловое напряжение будет равно 0, так как
Согласно II ЗК для контуров трехфазной системы:
Следовательно, напряжения фаз приемника:
Так как UnN = 0, то для симметричного приемника фазные напряжения приемника равны фазным напряжениям генератора:
,
,
.
Определив фазные напряжения, находят фазные токи:
İа
=
,
İb
=
,
İс
=
.
Для построения векторной диаграммы достаточно задаться начальной фазой одного из напряжений цепи, например jAB= + 30°.
Тогда
=
-120°;
.
На
комплексной плоскости строятся в
масштабе векторы фазных напряжений
,
,
и под углом ψф
или проводятся векторы токов.
Знак
угла j
зависит
от характера нагрузки: при индуктивной
– «+»,
при емкостной
– «–»,
при
активной – «0».
Векторная диаграмма симметричного приемника
Симметричный трехфазный приемник подключают к трехпроводной системе.
Несимметричный трехфазный приемник. Это приемник, у которого комплексные сопротивления фаз не равны между собой:
Схема несимметричного приемника.
,
jа
≠ jb
≠ jc
-
общий случай,
,
jа
≠ jb
≠ jc
-
равномерная несимметричная,
,
jа
= jb
= jc
-
однородная несимметричная.
Как видно из приведенного, у такого приемника могут быть не равны между собой модули фаз, аргументы равны; равны между собой модули фаз, аргументы фаз не равны; не равны между собой как модули так и аргументы фаз. В этом случае напряжение между нейтральной точкой генератора и нейтральной точкой приемника не будет равно нулю.
Фазные напряжения и токи приемника определяются по формулам
,
,
,
где
– напряжение смещения нейтрали, которое
определяется методом междуузлового
напряжения:
где для приведенной схемы:
;
;
.
По закону Ома определяются фазные токи:
При
построении векторной диаграммы необходимо
сначала построить векторы напряжений
источника
,
,
,
напряжения
смещения нейтрали
,
провести новые оси комплексной плоскости,
а затем построить векторы напряжений
приемника
и
векторы токов под соответствующими
углами ψia,
ψib,
ψiс
или
Векторная диаграмма напряжений и токов при смещении нейтрали
Из векторной диаграммы следует, что асимметрия нагрузки в трехпроводной сети приводит к перекосу фазных напряжений, что недопустимо. Поэтому трехпроводная система при несимметричной нагрузке и схеме «звезда» не применяется.
Из приведенных формул видно, что фазные напряжения приемника будут отличаться как от фазных напряжений генератора, так и относительно друг друга. В этом случае наступает «перекос» фазных напряжений приемника, что приводит к перенапряжению фаз приемника, токи фаз превышают номинальные значения, что является недопустимым.
В этом случае нарушается симметрия фазных напряжений на приемнике:
;
;
,
где – напряжение смещения нейтрали, которое определяется методом междуузлового напряжения.
Анализ формул показывает, что для выравнивания фазных напряжений приемника необходимо получить значение напряжения между нейтральными точками генератора и приемника равное 0. Это возможно при равенстве знаменателя бесконечности, т. е., если принять ZnN = 0, то YnN = ¥. На практике это достигается включением провода, сопротивление которого мало, между нейтралями генератора и приемника. Тогда
.
В этом случае напряжения на фазах приемника остаются практически симметричными, равными напряжению генератора.
;
;
.
Для нижеприведенной схемы значения комплексных полных проводимостей:
;
;
Схема несимметричного приемника,
включенного в четырех проводную систему
По закону Ома определяются фазные токи:
Ток нулевого провода
İN = İa + İb + İc
Векторная диаграмма для цепи. .
İa
= Ua
e
j0˚/R
= Ia
e
j0˚/;
İb
= Ub
e
-
j120˚/XLe
+j90˚
= Ib
e
-
j210˚; İС
= UС
e+
j120˚/XСe
-j90˚
= IС
e
+ j210˚; İN
=
İa
+ İb
+
İc
=
IN
e+jψiN
Векторная диаграмма несимметричного трехфазного приемника, включенного в четырехпроводную систему