
- •1, 4, 6, 7 – Узлы; 2, 3, 5, 8 – точки соединения элементов; 1–4, 4–6, 4–7, 6–7,
- •Законы Ома и Кирхгофа
- •Режимы работы электрических цепей
- •Эквивалентные преобразования последовательного, параллельного и смешанного соединений с r-элементами
- •Преобразование схем соединения сопротивлений «звезда» и «треугольник»
- •Лекция 2 Классификация цепей и особенности их расчета
- •Метод прямого применения законов Кирхгофа
- •Метод наложения (суперпозиции)
- •Метод контурных токов
- •Метод эквивалентного генератора
- •Метод узловых напряжений (метод двух узлов)
- •Уравнение баланса мощностей электрической цепи
- •Потенциальная диаграмма
- •Векторное изображение синусоидальных эдс, напряжений и токов
- •Комплексный метод расчета электрических цепей синусоидального тока
- •Законы Ома и Кирхгофа в комплексной форме
- •Пассивные элементы в цепи синусоидального тока
- •Цепь с резистивным элементом
- •Лекция 4
- •Цепь с последовательным соединением резистивного и индуктивного элементов
- •Цепь с емкостным элементом
- •Цепь с последовательным соединением резистивного и емкостного элементов
- •Электрическая цепь с последовательным соединением элементов с r, l, c
- •Треугольники напряжений, сопротивлений и мощностей
- •Резонанс напряжений
- •Лекция №6. Цепь с параллельным соединением резистивного, индуктивного и емкостного элементов
- •Треугольники токов и проводимостей
- •Параллельное соединение нескольких электроприемников
- •Резонанс токов
- •Цепь со смешанным соединением резистивного, индуктивного и емкостного элементов
- •Мощность однофазной цепи синусоидального тока
- •Методика расчета однофазных цепей синусоидального тока
- •Лекция 7
- •Соединение обмоток генератора и фаз приемника звездой
- •Трехфазный приемник, соединенный по схеме «звезда»
- •Соединение фаз приемника по схеме «треугольник»
- •Определение мощности и коэффициента мощности трехфазного приемника
- •Подключение катушки индуктивности с r, l к сети с постоянным напряжением
- •Переходные процессы при заряде и разряде конденсатора
- •Цепи периодического несинусоидального тока Причины возникновения периодических несинусоидальных эдс, токов и напряжений. Представление функций рядом Фурье
- •Действующее значение несинусоидальных электрических величин
- •Мощность электрической цепи при несинусоидальных напряжениях и токах
- •Лекция 10 основы электроники
- •Лекция 11 Полупроводниковые резисторы, диоды, транзисторы
- •Полевые транзисторы
- •Тиристоры
- •Интегральные микросхемы (имс)
- •Лекция 13
- •Т рехфазный мостовой управляемый выпрямитель (ув).
- •Сглаживающие фильтры
- •Усилители на биполярных и полевых транзисторах
- •Усилительный каскад на биполярном транзисторе с общим эмиттером
- •Графоаналитический анализ работы каскада на биполярном транзисторе с общим эмиттером
- •Амплитудная, амплитудно-частотная и фазочастотная характеристики каскада усилителя с общим эмиттером
- •Температурная стабилизация
- •Понятие о многокаскадных усилителях напряжения
- •Усилительные каскады на полевых транзисторах с общим истоком
- •Режимы работы усилительных каскадов
- •Лекция 15 Усилители мощности
- •Обратные связи в усилителях
- •Балансный усилительный каскад (дифференициальный каскад)
- •Лекция 16 Операцинные усилители
- •Примеры построения аналоговых схем на операционном усилителе
- •Импульсные устройства
- •Ключевой режим работы транзистора
- •Импульсный (нелинейный) режим работы операционного усилителя. Компараторы
- •Мультивибраторы
- •Элементы вычислительных машин Основные логические операции и их реализация на базе микросхем
- •Триггеры
- •Регистры
- •Лекция 18 трансформаторы.
- •Опыт короткого замыкания
- •Уравнения и схема замещения трансформатора. Приведенный трансформатор
- •Лекция 19 Параметры приведенной вторичной обмотки и схема замещения трансформатора. Приведенный трансформатор
- •Векторная диаграмма трансформатора
- •Внешняя характеристика и коэффициент полезного действия трансформатора
- •Измерительные трансформаторы
- •Лекция 20 Трехфазные трансформаторы
- •Лекция 21. Асинхронные машины Устройство трехфазного асинхронного двигателя
- •Принцип работы асинхронного двигателя
- •Электродвижущая сила и электромагнитный момент асинхронного двигателя
- •Анализ механической характеристики асинхронного двигателя
- •Лекция 22. Способы торможения асинхронных двигателей
- •Особенности новых серий двигателей
- •Лекция 24 синхронные машины Устройство и типы синхронных машин
- •Синхронный генератор
- •Лекция 25 Принцип работы и пуск синхронного двигателя
- •Электромагнитный момент синхронного двигателя. Угловая и механическая характеристики
- •Регулирование коэффициента мощности
- •Достоинства и недостатки синхронных двигателей
- •Лекция 26 машины постоянного тока Принцип работы и устройство машин постоянного тока
- •Электродвижущая сила и электромагнитный момент машины постоянного тока
- •Лекция 27 Реакция якоря
- •Коммутация машин постоянного тока
- •Генератор постоянного тока с независимым возбуждением
- •Генераторы постоянного тока с самовозбуждением
- •Лекция 28 Типы возбуждения и механические характеристики двигателей постоянного тока
- •ППуск двигателей постоянного тока
- •Регулирование частоты вращения двигателя постоянного тока
- •Торможение двигателей постоянного тока
- •Рабочие характеристики двигателя постоянного тока
- •Лекция 29 основы электропривода Электропривод и его классификация
- •Механические характеристики производственных механизмов и эд
- •Нагревание и охлаждение двигателя
- •Лекция 30 выбор электродвигателя
- •Нагрузочные диаграммы и номинальные режимы электродвигательного устройства
- •Расчет мощности двигателя
- •Лекция 32 управление электроприводом
- •Основы электроснабжения
- •Категории электроприемников и их электроснабжение
- •Содержание и порядок разработки проекта системы электроснабжения
- •Определение установленной мощности понизительной трансформаторной подстанции Расчетная максимальная мощность трансформаторной подстанции
- •Коэффициенты спроса и мощности основных электроустановок
- •Средневзвешенный коэффициент мощности и мощность компенсатора
- •Минимальное количество трансформаторов и установленная номинальная мощность понизительных трансформаторных подстанций
- •Понятия об учете и нормировании электроэнергии Учет электрической энергии
- •Системы оплаты электрической энергии
- •Общезаводские нормы расхода электроэнергии (фрагмент)
- •Лекция 34 коэффициент мощности действующей электроустановки и способы его улучшения
- •Понятия о центре электрических нагрузок и выборе места расположения понизительных трансформаторных подстанций
- •Расчет установленной мощности понизительной трансформаторной подстанции и исследование технико-экономических показателей ее трансформаторов в естественных и искусственных условиях
- •Суммарные нагрузки на птп
- •Алгоритм исследования
- •Расчетные нагрузки на трансформатор птп
- •Выводы и обобщения
- •Литература
Цепь с последовательным соединением резистивного и емкостного элементов
Напряжение источника
питания
,
ju
=
0o,
R
= 8 Ом, Xc
= 6 Ом.
Комплексное сопротивление цепи
Z
экв = R –
jXc
=
=
10e -j37°
Электрическая цепь с последовательным соединением R и С
Ток цепи İ = /Z экв = 220ej0/10е-j37 = (220/10)ej(0 + 37) = 22e+j37,
Напряжения участков цепи = Rİ = 8 · 22e+j37 = 176e+j37;
С = - jXс Ie+j37 = Xсе- j90° Ie j37 = 6е‑j90 22e+j37= 132e-j53
Векторная диаграмма цепи приведена на рисунке
Векторная диаграмма цепи с R и С-элементами
Мощность цепи в комплексной форме
S = I* = Uej Ie+jψi = 220e j0 · 22e-j37 = 4840е‑j37 = 4840cos37 -4840sin37 =
= 3872 - j2904.
Активная мощность цепи
P = Scosφ = RI 2 = 3872 Вт.
Реактивная мощность цепи
QL = Ssinφ = XсI 2 = - 2904 вар.
Коэффициент мощности
соsφ = Р/S = - 0,8.
Электрическая цепь с последовательным соединением элементов с r, l, c
Из предыдущего следует, что R, L, C – параметры электрической цепи, причем активное сопротивление характеризует активный (необратимый) процесс преобразования электрической энергии в другие виды энергии, а индуктивность и емкость – обратимый процесс преобразования энергии электрического поля.
Так как при последовательном соединении элементов R, L, C ток является общим для всех элементов цепи, то удобно принять
i = Im sinωt.
Электрическая цепь с последовательным соединением R, L, C
ПО II Закону Кирхгофа
u = uR + uL + uC.
или
u = UmахRsinωt + UmахLsin(ωt + π/2) + UmахC sinωt(ωt - π/2) =
= UmахRsinωt + (UmахL - UmахC)sin(ωt + π - π/2) =
= UmахRsinωt + (Umf[L - Umf[C)sinωt(ωt + π/2).
Таким образом, полное напряжение цепи состоит из двух синусоидальных слагаемых одинаковой частоты, а, следовательно, являются так же синусоидальными с некоторой амплитудой Umах и фазовым углом φ (при условии, что начальная фаза тока равна 0).
u = Umахsin(ωt+φ).
Векторная диаграмма тока и напряжений цепи при XL > XC показана на рисунке.
Векторная диаграмма цепи с последовательным соединением R, L, C
Запишем комплексные ток и напряжения:
İ = Ie j0.
=
ejφ
=
+
+
= I(R + I jXL
-
I jXC
)= I(R
+ j(XL
-
XC)).
Разделив обе части уравнения на İ, получим комплексное сопротивление цепи:
Z = Uejφ/Iej0 =Zejφ = R + j(XL – XC),
где
Z
=
модуль
комплексного сопротивления, или полное
сопротивление цепи;
R
-
активное сопротивление цепи;
XL – XC = Х - реактивное сопротивление цепи;
φ – аргумент комплексного сопротивления, равный углу сдвига фаз между векторами напряжения и тока
φ = arctg(XL – XC)/R.
Таким образом, значение угла φ зависит от соотношения между реактивным (XL – XC) и активным R сопротивлениями. Чем больше реактивное сопротивление, тем больше угол φ. Знак угла зависит от соотношения между индуктивным и емкостным сопротивлениями. Если ХL > ХC, то угол положительный и ток отстает от напряжения. Если ХL < ХC, то угол отрицательный и ток опережает напряжение.