Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Himia.docx
Скачиваний:
10
Добавлен:
24.04.2019
Размер:
578.63 Кб
Скачать

Твёрдые, жидкие, газообразные растворы

Чаще под раствором подразумевается жидкое вещество, например раствор соли или спирта в воде (или даже раствор золота в ртути — амальгама).

Существуют также растворы газов в жидкостях, газов в газах и жидкостей в жидкостях, в последнем случае растворителем считается вода, или же компонент, которого больше.

В химической практике обычно под растворами понимают гомогенные системы, растворитель может быть жидким, твёрдым (твёрдый раствор), газообразным. Однако нередко допускается и микрогетерогенность — см. «Золи».

«Раствором» именуют и смесь цемента с водой, песком и так далее. Хотя это и не является раствором в химическом смысле этого слова.

[Править]Ионные и коллоидные растворы

Коллоидные и ионные растворы (изучением коллоидных систем занимается коллоидная химия) отличаются главным образом размерами частиц.

В ионных растворах размер частиц менее 1×10−9 м, частицы в таких растворах невозможно обнаружить оптическими методами; в то время как в коллоидных растворах размер частиц 1×10−9 м — 5×10−7 м, частицы в таких растворах можно обнаружить при помощи ультрамикроскопа (см. эффект Тиндаля).

[Править]Растворение

Растворение — переход молекул вещества из одной фазы в другую (раствор, растворенное состояние). Происходит в результате взаимодействия атомов (молекул)растворителя и растворённого вещества и сопровождается увеличением энтропии при растворении твёрдых веществ и её уменьшением при растворении газов. При растворении межфазная граница исчезает, при этом многие физические свойства раствора (например, плотность, вязкость, иногда — цвет, и другие) меняются.

В случае химического взаимодействия растворителя и растворённого вещества сильно меняются и химические свойства — например, при растворении газа хлороводорода в воде образуется жидкая соляная кислота.

[Править]Растворы электролитов и неэлектролитов

Электролиты - вещества, проводящие в расплавах или водных растворах электрический ток. В расплавах или водных растворах они диссоциируют на ионы. Неэлектролиты - вещества, водные растворы и расплавы которых не проводят электрический ток, так как их молекулы не диссоциируют на ионы. Электролиты при растворении в подходящих растворителях (вода, другие полярные растворители) диссоциируют на ионы. Сильное физико-химическое взаимодействие при растворении приводит к сильному изменению свойств раствора (химическая теория растворов).

Вещества, которые в тех же условиях на ионы не распадаются и электрический ток не проводят, называются неэлектролитами.

К электролитам относятся кислоты, основания и почти все соли, к неэлектролитам — большинство органических соединений, а также вещества, в молекулах которых имеются только ковалентные неполярные или малополярные связи.

[Править]Растворы полимеров

Растворы высокомолекулярных веществ ВМС — белковуглеводов и др. обладают одновременно многими свойствами истинных и коллоидных растворов. Средняя молекулярная масса растворенного…

Б) Раствори́мость — способность вещества образовывать с другими веществами однородные системы — растворы, в которых вещество находится в виде отдельных атомов,ионовмолекул или частиц. Растворимость выражается концентрацией растворённого вещества в его насыщенном растворе либо в процентах, либо в весовых или объёмных единицах, отнесённых к 100 г или 100 см³ (мл) растворителя (г/100 г или см³/100 см³). Растворимость газов в жидкости зависит от температуры и давления. Растворимостьжидких и твёрдых веществ — практически только от температуры.

В)  Произведения растворимости

Насыщенный раствор — это раствор, находящийся в равновесии с осадком. Данное гетерогенное равновесие для электролита AmBn может быть выражено уравнением:

.

Константа равновесия данного процесса называется произведением растворимости (ПР) электролита AmBn и равна:

,

а для кристаллогидрата состава AmBn  zH2O

,

где aAaBaH2O — активности ионов А, В и воды соответственно. Экспериментальные значения произведений приведены в табл. 2.1.2.

Строгий расчет растворимости из данных по произведениям растворимости представляет собой достаточно сложную задачу, что связано с трудностью определения коэффициентов активности, необходимостью учета гидролиза катионов слабых оснований и анионов слабых кислот, комплексообразования и других протекающих в растворе процессов. В связи с этим при расчете растворимости соединений обычно прибегают к ряду упрощений. Как правило, расчет выполняют только для малорастворимых веществ, когда концентрация насыщенного раствора такова, что коэффициенты активностей ионов близки к единице (следовательно, активности ионов практически равны их концентрациям), а активность воды близка к единице. Кроме того, гидролизом ионов, как правило, пренебрегают, что при отсутствии дополнительных протолитов (кислот или оснований) не вносит сколько-нибудь значительной погрешности. В этих условиях справедливо соотношение:

,

где с — молярная концентрация ионов.

Из формулы электролита видно, что сА = mcсB = nc, где с — молярная концентрация электролита.

Тогда произведение растворимости связано с молярной концентрацией насыщенного раствора электролита следующим образом:

ПР = mm   nn   с(m+n).

Г) Под стандартной теплотой образования понимают тепловой эффект реакции образования одного моля вещества из простых веществ, его составляющих, находящихся в устойчивых стандартных состояниях.

Например, стандартная энтальпия образования 1 моль метана из углерода и водорода равна тепловому эффекту реакции:

С(тв) + 2H2(г) = CH4(г) + 76 кДж/моль.

Стандартная энтальпия образования обозначается ΔHfO. Здесь индекс f означает formation (образование), а перечеркнутый кружок, напоминающий диск Плимсоля[1] — то, что величина относится к стандартному состоянию вещества. В литературе часто встречается другое обозначение стандартной энтальпии — ΔH298,150, где 0 указывает на равенство давления одной атмосфере[2] (или, несколько более точно, на стандартные условия[3]), а 298,15 — температура. Иногда индекс 0 используют для величин, относящихся к чистому веществу, оговаривая, что обозначать им стандартные термодинамические величины можно только тогда, когда в качестве стандартного состояния выбрано именно чистое вещество[4]. Стандартным также может быть принято, например, состояние вещества в предельно разбавленном растворе. «Диск Плимсоля» в таком случае означает собственно стандартное состояние вещества, независимо от его выбора.

Энтальпия образования простых веществ принимается равной нулю, причем нулевое значение энтальпии образования относится к агрегатному состоянию, устойчивому при T = 298 K. Например, для йода в кристаллическом состоянии ΔHI2(тв)0 = 0 кДж/моль, а для жидкого йода ΔHI2(ж)0 = 22 кДж/моль. Энтальпии образования простых веществ при стандартных условиях являются их основными энергетическими характеристиками.

Тепловой эффект любой реакции находится как разность между суммой теплот образования всех продуктов и суммой теплот образования всех реагентов в данной реакции (следствие закона Гесса):

ΔHреакцииO = ΣΔHfO (продукты) — ΣΔHfO (реагенты)

Термохимические эффекты можно включать в химические реакции. Химические уравнения в которых указано количество выделившейся или поглощенной теплоты, называются термохимическими уравнениями. Реакции, сопровождающиеcя выделением тепла в окружающую среду имеют отрицательный тепловой эффект и называютсяэкзотермическими. Реакции, сопровождающиеся поглощением тепла имеют положительный тепловой эффект и называются эндотермическими. Тепловой эффект обычно относится к одному молю прореагировавшего исходного вещества, стехиометрический коэффициент которого максимален.

17.А) Массовая доля – Многие характеристики вещества являются суммой нескольких составляющих, каждая из которых представляет определенную долю от целого. Математически долю каждой составляющей определяют как частное от деления части на целое (меньшей величины на большую). Так например, массовая доля водорода ω(H) в этиловом спирте С2Н5ОН вычисляется следующим образом:

Часто долю выражают в процентах. Для этого полученный результат умножают на 100. То есть в данном случае ω(H)=13%. Это означает, что в каждом г (кг, т) С2Н6O содержится 0,13 г (кг, т) водорода или каждые 100 г (кг, т) С2Н6O содержат 13 г (кг, т) водорода.

Массовая доля (ω) компонента отличается по величине от его мольной доли (φ).

    • Вычисление мольной доли.

    • Задача на вычисление мольной доли компонента смеси по его массовой доле.

  • это отношение массы растворенного вещества к общей массе раствора. Для бинарного раствора

  • ω(x) = m(x) / (m(x) + m(s)) = m(x) / m

  • где ω(х) - массовая доля растворенного вещества Х

  • m(x) - масса растворенного вещества Х, г;

  • m(s) - масса растворителя S, г;

  • m = m(x) + m(s) - масса раствора, г.

  • Массовую долю выражают в долях единицы или в процентах (например - ω = 0,05 или 5%)

Б) Моляльная доля –

В) молярная концентрация - Молярной концентрацией называется отношение количества растворённого вещества к объёму раствора, выраженному в литрах. По ГОСТ обозначается буквой С; варианты: Cm; См. Основная расчётная формула: С = n/V, а т.к. количество вещества определяется как отношение массы вещества к его молярной массе, т.е. n = m/M, формул адля расчета молярной концентрации приобретает вид: С = m/(M*V) 

Г) моляльная концентрация - Моляльная концентрация выражает-с я числом грамм-молекул растворенного вещества приходящихся на 1000 г растворителя. [1]

Д) эквивалентная концентрация –

Е) Титр - Титр раствора (от фр. titre — качество, характеристика) — способ выражения концентрации, применяемый, в основном, в аналитической химии. Обозначается заглавной латинской буквой T (тэ). Измеряется в г/мл (г/см³).

Различают титр по растворённому веществу и титр по определяемому веществу (условный титр).

Титр по растворённому веществу или просто титр — масса растворённого вещества (в граммах), содержащаяся в одном миллилитре (см³) раствора.

Рассчитывается по формуле:

где

T — титр раствора (в г/мл)

m — масса растворённого вещества (в г)

V — объём раствора (в мл)

18.А) Электролитическая диссоциация – Электролитическая диссоциация — процесс распада электролита на ионы при растворении его в полярном растворителе или при плавлении. Диссоциация на ионы в растворах происходит вследствие взаимодействия растворённого вещества с растворителем; по данным спектроскопических методов, это взаимодействие носит в значительной мере химический характер. Наряду с сольватирующей способностью молекул растворителя определённую роль в электролитической диссоциации играет также макроскопическое свойство растворителя — его диэлектрическая проницаемость (Схема электролитической диссоциации).

Б) сильные и слабые электролиты – лассификация электролитов по способности диссоциировать

Степень диссоциации слабых электролитов зависит от концентрации раствора: по мере уменьшения концентрации степень диссоциации увеличивается.

В) степень диссоциации – Степень диссоциации также зависит от природы электролита, природы растворителя, температуры. Все это делает ее не очень удобной количественной характеристикой: ведь для сравнения даже двух электролитов по способности образованию ионов необходимо рассматривать растворы одинаковой концентрации в одном и том же растворителе. Поэтому для оценки силы электролита используют еще одну количественную характеристику: константу диссоциации, которая не зависит от концентрации раствора.

Г) Константа диссоциации – Константа диссоциации (К) определяется на основе закона действующих масс. Этот закон может быть применим к равновесию, которое устанавливается в растворе слабого электролита между молекулами и ионами. Константа диссоциации представляет собой отношение произведения концентраций ионов к концентрации недиссоциированных молекул.

Д) Закон Оствальда – Закон разбавления Оствальда — соотношение, выражающее зависимость эквивалентной электропроводности разбавленного раствора бинарного слабого электролита от концентрации раствора:

Здесь К — константа диссоциации электролита, с — концентрация, λ и λ — значения эквивалентной электропроводности соответственно при концентрации с и при бесконечном разбавлении. Соотношение является следствием закона действующих масс и равенства

где α — степень диссоциации.

Закон разбавления Оствальда выведен В.Оствальдом в 1888 и им же подтвержден опытным путём. Экспериментальное установление правильности закона разбавления Оствальда имело большое значение для обоснования теории электролитической диссоциации.

Ж) Активность ионов – Активность (ионов) — эффективная концентрация с учетом электростатического взаимодействия между ионами в растворе. Активность отличается от концентрации на некоторую величину. Отношение активности (а) к концентрации вещества в растворе (с, в г-ион/л) называется коэффициентом активности: γ = a/c. 

З) Ионная сила раствора – Ионная сила раствора — мера интенсивности электрического поля, создаваемого ионами в растворе. Полусумма произведений из концентрации всех ионов в растворе на квадрат их заряда. Формула впервые была выведена Льюисом:

,

где cB — молярные концентрации отдельных ионов (моль/л), zB заряды ионов

Суммирование проводится по всем типам ионов, присутствующих в растворе. Если в растворе присутствуют два или несколько электролитов, то вычисляется общая суммарная ионная сила раствора.

Например, для раствора NaCl с концентрацией 0,001 моль/л, в котором присутствуют два вида однозарядных ионов Na+ и Cl с концентрациями также равными 0,001 моль/л, ионная сила будет вычисляться следующим образом:

I(NaCl) = 0,5(z²(Na+)•c(Na+) + z²(Cl)•c(Cl)) = 0,5(1²•c(NaCl) + (-1)²•c(NaCl)) = c(NaCl)

И ионная сила соответственно будет равна концентрации раствора:

I = 0.5(1²•0,001 моль/л + (-1)²•0,001 моль/л) = 0.5(0,001 моль/л + 0,001 моль/л) = 0,001 моль/л

Это верно для раствора любого сильного электролита, состоящего из однозарядных ионов. Для электролитов, в которых присутствуют многозарядные ионы, ионная сила обычно превышает молярность раствора.

Ионная сила раствора имеет большое значение в теории сильных электролитов Дебая — Хюккеля. Основное уравнение этой теории (предельный закон Дебая — Хюккеля) показывает связь между коэффициентом активности иона ze и ионной силы раствора I в виде:

,

где γ — коэффициент активности, А — постоянная, не зависящая от заряда иона и ионной силы раствора, но зависящая от диэлектрической постоянной растворителя и температуры.

И) Ионное произведение воды – Ио́нное произведе́ние воды́ — произведение концентраций ионов водорода Н+ и ионов гидроксида OH в воде или в водных растворахконстанта автопротолиза воды. Вода, хотя и является слабым электролитом, в небольшой степени диссоциирует:

H2O + H2O ↔ H3O+ + OH

или

H2O ↔ H+ + OH

Равновесие этой реакции сильно смещено влево. Константу диссоциации воды можно вычислить по формуле:

,

(1)

где:

  • [H+] — концентрация ионов гидроксония (протонов);

  • [OH] — концентрация гидроксид-ионов;

  • [H2O] — концентрация воды (в молекулярной форме) в воде;

Концентрация воды в воде, учитывая её малую степень диссоциации, величина практически постоянная и составляет (1000 г/л)/(18 г/моль) = 55,56 моль/л.

При 25 °C константа диссоциации воды равна 1,8×10−16моль/л. Уравнение (1) можно переписать как:

,

(2)

Обозначим произведение K·[H2O] = Kв = 1,8×10−16 моль/л·55,56 моль/л = 10−14моль²/л² = [H+]·[OH] (при 25 °C).

Константа Kв, равная произведению концентраций протонов и гидроксид-ионов, называется ионным произведением воды. Она является постоянной не только для чистой воды, но также и для разбавленных водных растворов веществ. C повышением температуры диссоциация воды увеличивается, следовательно, растёт и Kв, при понижении температуры — наоборот.

К) Водородный показатель среды раствора Водоро́дный показа́тельpH (произносится «пэ аш», английское произношение англ. pH — piː'eɪtʃ «Пи эйч») — мера активности (в очень разбавленных растворах она эквивалентна концентрацииионов водорода в растворе, и количественно выражающая его кислотность, вычисляется как отрицательный (взятый с обратным знаком) десятичный логарифм активности водородных ионов, выраженной в молях на литр:

19.А) Гидролиз солей – Гидролиз солей — разновидность реакций гидролиза, обусловленного протеканием реакций ионного обмена в растворах (преимущественно, водных) растворимых солей-электролитов. Движущей силой процесса является взаимодействие ионов с водой, приводящее к образованию слабого электролита в ионном или (реже) молекулярном виде («связывание ионов»).

Различают обратимый и необратимый гидролиз солей[1]:

  • 1. Гидролиз соли слабой кислоты и сильного основания (гидролиз по аниону):

CO32− + H2O = HCO3 + OH Na2CO3 + Н2О = NaHCO3 + NaOH (раствор имеет слабощелочную среду, реакция протекает обратимо, гидролиз по второй ступени протекает в ничтожной степени)

  • 2. Гидролиз соли сильной кислоты и слабого основания (гидролиз по катиону):

Cu2+ + Н2О = CuOH+ + Н+ CuCl2 + Н2О = CuOHCl + HCl (раствор имеет слабокислую среду, реакция протекает обратимо, гидролиз по второй ступени протекает в ничтожной степени)

  • 3. Гидролиз соли слабой кислоты и слабого основания:

2Al3+ + 3S2− + 6Н2О = 2Al(OH)3(осадок) + ЗН2S(газ) Al2S3 + 6H2O = 2Al(OH)3 + 3H2S (равновесие смещено в сторону продуктов, гидролиз протекает практически полностью, так как оба продукта реакции уходят из зоны реакции в виде осадка или газа).

Соль сильной кислоты и сильного основания не подвергается гидролизу, и раствор нейтрален. См. также Электролитическая диссоциация.

Б) Степень гидролиза – Под степенью гидролиза подразумевается отношение части соли, подвергающейся гидролизу, к общей концентрации её ионов в растворе. Обозначается α (или hгидр); α = (cгидр/cобщ)·100 % где cгидр — число молей гидролизованной соли, cобщ — общее число молей растворённой соли. Степень гидролиза соли тем выше, чем слабее кислота или основание, её образующие.

Является количественной характеристикой гидролиза.

В) Константа гидролиза – Константа гидролиза — константа равновесия гидролитической реакции.

Выведем уравнение константы гидролиза соли, образованной слабой кислотой и сильным основанием:

Уравнение константы равновесия для данной реакции будет иметь вид:

    или    

Так как концентрация молекул воды в растворе постоянна, то произведение двух постоянных   можно заменить одной новой — константой гидролиза:

Численное значение константы гидролиза получим, используя ионное произведение воды   и константу диссоциации азотистой кислоты  :

подставим в уравнение константы гидролиза равна:

В общем случае для соли, образованной слабой кислотой и сильным основанием:

, где Ka — константа диссоциации слабой кислоты, образующейся при гидролизе

для соли, образованной сильной кислотой и слабым основанием:

, где Kb — константа диссоциации слабого основания, образующегося при гидролизе

для соли, образованной слабой кислотой и слабым основанием:

Г) Смещение ионных равновесий- Ионное равновесие, как и любое другое, смещается при изменении концентрации одного из ионов. Например, если в растворуксусной кислотыдиссоциирующей по уравнению

CH3COOH H+ + CH3COO

ввести какую-либо соль этой кислоты и тем самым увеличить концентрацию ионов CH3COO, то в соответствии с принципом Ле-Шателье * равновесие смещается влево. Отсюда следует, что введение в раствор слабого электролита * одноименных ионов (т.е. ионов, одинаковых с одним из ионов электролита) уменьшает степень диссоциации * этого электролита.

Аналогично нарушается равновесие в случае малорастворимого электролита (соли). Например, если к насыщенному растворусульфата кальция CaSO4 добавить другой, хорошо растворимый сульфат (K2SO4), то вследствие увеличения концентрации ионов SO42–равновесие сместится в сторону образования кристаллов (образуется осадок CaSO4). Этот процесс прекратится, когда произведение концентраций [Ca2+] и [SO42–] станет равно произведению растворимости *, т.е. установится новое состояние равновесия.

На основании рассмотренных примеров можно сделать следующий вывод: реакции в растворах электролитов всегда идут в сторону образования наименее диссоциированных или наименее растворимых веществ. Из этого, в частности, следует, что сильные кислоты вытесняют слабые из растворов их солей:

CH3COONa + HCl = CH3COOH + NaCl

Суть этой реакции более точно отражается ионно-молекулярным уравнением, где формулы слабых электролитов записаны в виде молекул, а сильных – в виде ионов:

CH3COO + Na+ + H+ + Cl  = CH3COOH + Na+ + Cl

или в сокращенном виде:

CH3COO + H+  = CH3COOH

ОКИСЛИТЕЛЬНО-ВОСТАНОВИТЕЛЬНЫЕ ПРОЦЕССЫ.

20.А) степень окисления- Сте́пень окисле́ния (окислительное число, формальный заряд) — вспомогательная условная величина для записи процессов окисления, восстановления и окислительно-восстановительных реакций, численная величина электрического заряда, приписываемого атому в молекуле в предположении, что электронные пары, осуществляющие связь, полностью смещены в сторону более электроотрицательных атомов.

Представления о степени окисления положены в основу классификации и номенклатуры неорганических соединений.

Б) Реакции протекающий с изменением мтепени окисления – Все химические реакции можно разделить на два типа. К первому из них относятся  реакции, протекающие без изменения степени окисления атомов, входящих в состав реагирующих веществ.

Например: 

  = 

  = 

Как видно, степень окисления каждого из атомов до и после реакции осталась без изменения.

Ко второму типу относятся реакции, идущие с изменением степени окисления атомов реагирующих веществ.

Например:

  = 

     = 

Здесь в первой реакции атомы хлора и кислорода, а во второй - атомы брома и хлора изменяют степень окисления.

Реакции, протекающие с изменением степени окисления атомов, входящих в состав реагирующих веществ, называются окислительно-восстановительными.

Изменение степени окисления связано с оттягиванием или перемещением электронов.

Окислительно-восстановительные реакции - самые распространен­ные и играют большую роль в природе и технике.

Рассмотрим основные положения теории окислительно-восстановительных реакций.

1. Окислением называется процесс отдачи электронов атомом, молекулой или ионом.

Например:

Al – 3e- = Al3+       Fe2+ - e- = Fe3+

H2 – 2e- = 2H+       2Cl- - 2e- = Cl2

При окислении степень окисления повышается.

2. Восстановлением называется процесс присоединения электронов атомом, молекулой или ионом.

Например:

S + 2е- = S2-  Сl2 + 2е- = 2Сl-  Fe3+ + e- = Fe2+

При восстановлении степень окисления понижается.

3. Атомы, молекулы или ионы, отдающие электроны называются восстановителями. Во время реакции они окисляются. Ато­мы, молекулы или ионы,присоединяющие электроны, называются окислителями. Во время реакции они восстанавливаются. Так как атомы, молекулы и ионы входят в состав определенных ве­ществ, то и эти вещества соответственно называются восстановителями или окислителями.

4. Окисление всегда сопровождается восстановлением, и наоборот, восстановление всегда связано с окислением, что можно выразить уравнениями:

Восстановитель – е-   Окислитель

Окислитель + е-   Восстановитель

Поэтому окислительно-восстановительные реакции представляют собой единство двух противоположных процессов - окисления и восстановле­ния.

Число электронов, отдаваемых восстановителем,  равно числу электронов, присоединяемых окислителем.

При этом, независимо от того, переходят ли электроны с одного атома на другой полностью или же лишь частично оттягиваются к одному из атомов, условно говорят только об отдаче и присоединении электронов.

Процессы окисления и восстановления можно физически отделить друг от друга и осуществить перенос электронов по внешней электрической цепи. Пусть в стакан 2налит раствор иодида калия КI ,  а в стакан 4 - раствор хлорида железа (III) FeСl3. Растворы соединены  между собой так называемым «электролитическим ключом» 3 – U-образной трубкой, заполненной раствором хлорида калия КCl, обеспечивающим ионную проводимость. В растворы опущены платиновые электроды 1 и 5. Если замкнуть цепь,включив в нее чувствительный амперметр, то по отклонению стрелки можно будет наблюдать прохождение электрического тока и его направление. Электроны перемещаются от электрода с раствором иодида калия к электроду с раствором хлорида железа (III), т.е. от восстановителя - ионов I- - к окислителю – ионам Fe3+. При этом ионы I- окисляются до молекул иода I2, а ионы Fе3+ восстанавли­ваются до ионов железа (II) Fe2+. Через некоторое время продукты реакций можно обнаружить характерными реакциями: иод - раствором крахмала, а ионы Fe2+ - раствором гексациано-(II) феррата калия (красной кровяной соли) К3[Fе(СN)6].

Приведенная на рисунке схема представляет собой гальванический элемент, построенный на основе окислительно-восстановительной реакции. Он состоит из двух полуэлементов: в первом протекает процесс окисления восстановителя:

2I- - 2e- = I2

а во втором - процесс восстановления окислителя:

Fe3+ + е- = Fe2+

Поскольку эти процессы протекают одновременно, то, умножив последнее уравнение на коэффициент 2 (для уравнивания числа от­данных и присоединенных электронов)и суммируя почленно приве­денные уравнения, получим уравнение реакции:

2I- + 2Fe3+ = I2 + 2Fe2+

или 

2KI + 2FeCl3 = I2 + 2FeCl2 + 2KCl

Всякая окислительно-восстановительная реакция может служить источником электрического тока, если она протекает в гальваническом элементе.

В) эквивалент окислителя и восстановителя – Процессы, сопровождающиеся изменением степеней окисления реагирующих частиц, называют окислительно-восстановительными реакциями. В отличие от реакций ионного обмена окислительно-восстановительные реакции (ОВР) в водных растворах протекают, как правило, не мгновенно.

Эти реакции могут быть использованы для получения электрического тока. Равным образом процессы окисления и восстановления могут протекать под действием электрического тока. В этих двух случаях окислительно-восстановительные реакции относят к электрохимическим  процессам.

                В окислительно-восстановительной реакции

Ищете книжные обложки?

У нас есть красивые обложки для книг и много других модных штучек!

Zn + CuSO4 = ZnSO4 + Cu

атом  цинка   отдает два электрона

Zn -2e → Zn2+,

а ион меди принимает два  электрона

Cu2+ + 2e → Cu

Процесс потери электронов называют окислением, а вещество, отдающее электроны является восстановителем; цинк является восстановителем,  он окисляется. Процесс принятия электронов называют восстановлением, а вещество, принимающее электроны является окислителем; ион меди Cu2+ является окислителем, он восстанавливается.

                Процессы окисления и восстановления протекают одновременно; окисление одного вещества всегда связано с восстановлением другого.

Критерий направления реакции в стандартных условиях.

Если в реакционной смеси присутствуют как исходные вещества, так и образуемые ими при протекании ОВР продукты реакции или, иначе говоря, два окислителя и два восстановителя, то направление реакции определяется тем, какой из окислителей в данных условиях в соответствии с уравнением Нернста окажется более сильным.

Любая запись уравнения ОВР предполагает определенный выбор окислителя в левой части уравнения. Если в стандартных условиях этот окислитель сильнее, реакция пойдет в прямом направлении, если нет – в обратном.

Стандартный потенциал окислительно-восстановительной пары, в которой окисленной формой является выбранный нами окислитель, назовем потенциалом окислителя φоОк, а стандартный потенциал другой пары, в которой восстановленной формой является выбранным нами восстановитель – потенциалом восстановителя φоВс.

Величину Δφо = φоОк – φоВс назовем стандартной разностью окислительно-восстановительных потенциалов.

Если Δφо > 0, реакция в стандартных условиях протекает в прямом направлении; если Δφо < 0, то в обратном.

Действительный смысл этого критерия: если Δφо> 0, то окислитель в левой части ионного уравнения ОВР сильнее второго окислителя в правой части уравнения.

                Эквивалентом окислителя (восстановителя) называется такое его наименьшее количество, которое соответствует одному присоединенному (отданному) им электрону в конкретном окислительно-восстановительном процессе.

Математически это утверждение будет соответствовать формуле:

          Эоx= νох/nē.

         Аналогично и для восстановителя:

Эred = νred/nē             

         При этом количество вещества эквивалента окислителя (νэох) и восстановителя (νэred) рассчитываются иначе, чем в случае химических эквивалентов.   

К окислительно-восстановительным системам также применим закон эквивалентов, согласно которому:

                            СN(ox).V(ox) = CN(red).V(red).

Для количественной характеристики окислительно-восстановительных процессов используют, в частности, молярную массу эквивалентов окислителя и восстановителя определяемую по формуле - она равна частному от деления  молярной массы окислителя или восстановителя на число электронов, принятых или отданных одной  структурной единицей вещества:

                                                                (8.1)

где zB – число эквивалентности, равное числу электронов, принятых или отданных одной   структурной единицей вещества.

Уравнения окислительно-восстановительных процессов составляются   с помощью метода   электронного баланса.

Процесс передачи электронов от окислителя к восстановителю является самопроизвольным и обратимым, при этом система в целом остается электрически нейтральной.

В окислительно-восстановительной системе, содержащей одновременно и окисленную и восстановленную фазы,  отсутствует градиент потенциала (разность зарядов), в ней всегда соблюдается электронный баланс.

Г) Процессы окисления восстановления – В процессе окислительно-восстановительной реакции восстановитель отдаёт электроны, то есть окисляется; окислитель присоединяет электроны, то естьвосстанавливается. Причём любая окислительно-восстановительная реакция представляет собой единство двух противоположных превращений — окисления и восстановления, происходящих одновременно и без отрыва одного от другого.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]