
- •5. В лифте установлены пружинные весы, на которых подвешено тело массы 1 кг.
- •6. В лифте установлены пружинные весы, на которых подвешено тело массы 1 кг.
- •10. Тело массы m вращается на упругой нити длиной l в вертикальной плоскости.
- •Часть 1
- •1. Положение материальной точки в пространстве задается
- •2. Средние скорость и ускорение
- •3. Мгновенные скорость и ускорение
- •4. Кинематические уравнения движения
- •Средние угловая скорость и ускорение
- •Мгновенные угловая скорость и ускорение
- •7. Кинематическое уравнение вращательного движения мате-
- •Уравнение движения материальной точки в дифференциаль-
- •2. Силы в механике
- •3. Силы, действующие на заряд в электрическом и магнитном
- •4. Принцип суперпозиции сил
- •Динамика материальной точки, движущейся по окружности
- •6. Импульс тела. Закон сохранения импульса
- •Работа постоянной и переменной силы. Мощность.
- •Связь изменения кинетической энергии с работой
- •Потенциальная энергия и её проявления.
- •Связь потенциальной силы с потенциальной энергией
- •Закон сохранения механической энергии
- •Совместное применение законов сохранения и импульса
- •Часть 2
- •1. График учебного процесса по физике
- •Момент силы, момент инерции, момент импульса материальной
- •2.Момент инерции однородных тел правильной геометрической формы
- •3. Уравнение динамики вращательного движения
- •4. Собственный, орбитальный и полный момент импульса отно-
- •5. Закон сохранения момента импульса
- •6. Работа и мощность момента силы
- •7. Кинетическая энергия вращательного движения
- •Связь работы с изменением кинетической энергии при вращени
- •Гироскоп. Частота прецессии гироскопа
- •Динамика вращательного движения твердого тела
- •Законы гидростатики
- •2. Стационарное течение идеальной жидкости или газа
- •3. Течение вязкой жидкосим. Формула Пуазейля.
- •4. Турбулентное течение вязкой жидкости. Число Рейнольдса
- •Период колебаний тела, подвешенного на пружине ( пружинный
- •Период колебаний математического маятника
- •Период колебаний физического маятника
- •Период крутильных колебаний тела, подвешенного на упругой нити,
- •11.Сложение колебаний
- •Волны в упругой среде
- •Момент силы, момент инерции, момент импульса материальной
- •2.Момент инерции однородных тел правильной геометрической формы
- •3. Уравнение динамики вращательного движения
- •4. Собственный, орбитальный и полный момент импульса отно-
- •5. Закон сохранения момента импульса
- •6. Работа и мощность момента силы
- •7. Кинетическая энергия вращательного движения
- •Связь работы с изменением кинетической энергии при вращени
- •Гироскоп. Частота прецессии гироскопа
- •Законы гидростатики
- •2. Стационарное течение идеальной жидкости или газа
- •3. Течение вязкой жидкосим. Формула Пуазейля.
- •4. Турбулентное течение вязкой жидкости. Число Рейнольдса
- •Период колебаний тела, подвешенного на пружине ( пружинный
- •Период колебаний математического маятника
- •Период колебаний физического маятника
- •Период крутильных колебаний тела, подвешенного на упругой нити,
- •11.Сложение колебаний
- •Волны в упругой среде
- •1. Момент инерции твердого тела определяется как:
- •3. Укажите, какая сила создает момент вращения:
3. Мгновенные скорость и ускорение
Мгновенная скорость
v = dr /dt = vx i + vy j + vz k ,
где vx = dx /dt ; vy = dy /dt ; vz = dz /dt − проекции вектора скорости на
на координатные оси.
Модуль вектора скорости
v = √ vx² + vy² + vz² .
Мгновенное ускорение
a = dv /dt = dvx /dt i + dvy /dt j + dvz /dt k .
Модуль ускоренияt
a = √ ax² + ay ² + az² .
4. Кинематические уравнения движения
Кинематическое уравнение движения материальной точки в векторной
форм
t
r ( t ) = ro + ∫ v ( t )dt ,
to
где ro − радиус-вектор материальной точки в начальный момент времени
to; r − радиус-вектор в произвольный момент времени t , v ( t ) = dr /dt −
закон изменения скорости точки со временем.
Векторное уравнение движения эквивалентно трем скалярным:
t
x ( t ) = xo + ∫ v(t) dt ,
to
t
y ( t ) = yo + ∫ v(t) dt ,
to
t
z ( t ) = zo + ∫ vz(t) dt .
Кинематическое уравнение равномерного прямолинейного движения
материальной точки вдоль оси х 5
х = хо + vt .
Кинематическое уравнение равномерного прямолинейного движения
( a = const ) вдоль оси х
х = хо + vot + at² / 2 .
Скорость точки при равнопеременном движении вдлоль оси х
v = vo + a t .