Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
вопросы к экзамену химия.docx
Скачиваний:
23
Добавлен:
24.04.2019
Размер:
300.86 Кб
Скачать

1.Уравнение Гиббса.Каким образом величина изменения энергии Гиббса характеризует возможность протекания данного процесса?

Свободная энергия Гиббса (или просто энергия Гиббса, или потенциал Гиббса, или термодинамический потенциал в узком смысле) — это величина, показывающая изменение энергии в ходе химической реакции и дающая таким образом ответ на принципиальную возможность химической реакции; это термодинамический потенциал следующего вида:

Энергию Гиббса можно понимать как полную химическую энергию системы

Энергия Гиббса и направление протекания реакции

В химических процессах одновременно действуют два противоположных фактора — энтропийный (TΔS) и энтальпийный (ΔH). Суммарный эффект этих противоположных факторов в процессах, протекающих при постоянном давлении и температуре, определяет изменение энергии Гиббса (G):

Из этого выражения следует, что то есть некоторое количество теплоты расходуется на увеличение энтропии (TΔS), эта часть энергии потеряна для совершения полезной работы, её часто называют связанной энергией. Другая часть теплоты (ΔG) может быть использована для совершения работы, поэтому энергию Гиббса часто называют также свободной энергией.

Характер изменения энергии Гиббса позволяет судить о принципиальной возможности осуществления процесса. При ΔG < 0 процесс может протекать, при ΔG > 0 процесс протекать не может (иными словами, если энергия Гиббса в исходном состоянии системы больше, чем в конечном, то процесс принципиально может протекать, если наоборот — то не может). Если же ΔG = 0, то система находится в состоянии химического равновесия.

Обратите внимание, что речь идёт исключительно о принципиальной возможности протекания реакции. В реальных же условиях реакция может не начинаться и при соблюдении неравенства ΔG < 0 (по кинетическим причинам).

Существует полезное соотношение, связывающее изменение свободной энергии Гиббса в ходе химической реакции с её константой равновесия :

Вообще говоря, любая реакция может быть рассмотрена как обратимая (даже если на практике она таковой не является). При этом константа равновесия определяется как

где —k1 константа скорости прямой реакции,k-1 — константа скорости обратной реакции.

2.Что представляют собой стандартные значения термодинамических функций?Для каких условий они рассчитываются?

Термодинамические функции – свойства системы: внутреннюю энергию U, энтальпию H, энтропию S, энергию Гельмгольца F, энергию Гиббса G. Каждое из этих свойств можно представить в виде функции различных переменных, определяющих состояние системы. Однако в системах, состоящих из индивидуальных веществ, каждому из них можно приписать две переменные, которые можно считать «естественными» для той или иной функции.

В этом случае функция становится характеристической, т.к. через каждую из этих функций и ее производные в явном виде выражаются любые термодинамические свойства системы- любое измеримое свойство макроскопической равновесной системы.

Так, внутренняя энергия является характеристической функцией при переменных объеме V и энтропии S, т.е.

Если для равновесного процесса, когда в системе совершается только работа расширения, записать формулу объединенного первого и второго законов термодинамики (II,17а) относительно dU, то получим

Из чего следует, что

и (III, 23а)

Таким образом, производная внутренней энергии по энтропии при постоянном объеме равна температуре, а производная внутренней энергии по объему при постоянной энтропии равна давлению со знаком минус. При любых других переменных нельзя получить такие простые выражения свойств системы через производные внутренней энергии. Следовательно, для нее объем V и энтропия S являются естественными переменными.

Другими характеристическими функциями являются:

Запишем выражения для полных дифференциалов названных функций и частных производных этих функций по их естественным переменным:

(III, 24) (III, 24а)

(III, 25) (III, 25а)

(III, 26) (III, 26а)

Выражения (III, 23) - (III, 26) называются фундаментальными (каноническими) уравнениями состояния. Они образуют замкнутую группу, в которой две пары переменных – температура Т и энтропия S являются параметрами, связанными с теплотой. С другой стороны, давление Р и объем V связаны с работой.