Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ксе ответы.doc
Скачиваний:
40
Добавлен:
24.04.2019
Размер:
778.24 Кб
Скачать

10. Научные революции эпохи Возрождения.

Первая научная революция: Произошла в период конца XV-XVI веков, ознаменовавший переход от средневековья к Новому времени и получивший название эпохи Возрождения. Последняя характеризовалась возрождением культурных ценностей античности, расцветом искусства, утверждением идей гуманизма. Эпоха Возрождения отличалась существенным прогрессом науки и радикальным изменением миропонимания, которое явилось следствием появления гелиоцентрического учения великого польского астронома Николая Коперника. Возникло принципиально новое миропонимание, которое исходило из того, что Земля -- одна из планет, движущихся вокруг Солнца по круговым орбитам. Совершая обращение вокруг Солнца, Земля одновременно вращается и вокруг собственной оси, чем и объясняется смена дня и ночи, видимое нами движение звездного неба. Включив Землю в число небесных тел, которым свойственно круговое движение, Коперник высказал очень важную мысль о движении как естественном свойстве небесных и земных объектов, подчиненном некоторым общим закономерностям единой механики. Учение Коперника подрывало опиравшуюся на идеи Аристотеля религиозную картину мира. Последняя исходила из признания центрального положения Земли, что давало основание объявлять находящегося на ней человека центром и высшей целью мироздания. Кроме того, религиозное учение о природе противопоставляло земную материю, объявляемую тленной, преходящей -- небесной, которая считалась вечной и неизменной. Одним из активных сторонников учения Коперника, поплатившихся жизнью за свои убеждения, был знаменитый итальянский мыслитель Джордано Бруно. Но он пошел дальше Коперника, отрицая наличие центра Вселенной вообще и отстаивая тезис о бесконечности Вселенной. Бруно говорил о существовании во Вселенной множества тел, подобных Солнцу, и окружающих его планетах. Причем многие из бесчисленного количества миров, считал он, обитаемы и, по сравнению с Землей, «если не больше и не лучше, то во всяком случае не меньше и не хуже».

Вторая научная революция: Особую роль сыграл XVII век, ознаменовавшийся рождением современной науки, у истоков которой стояли такие выдающиеся ученые, как Галилей, Кеплер, Ньютон. В учении Галилео Галилея были заложены основы нового механического естествознания. Как свидетельствуют А. Эйнштейн «самая фундаментальная проблема, остававшаяся в течение тысячи лет неразрешенной из-за сложности, -- это проблема движения». До Галилея общепринятым в науке считалось понимание движения, выработанное Аристотелем и сводившееся к следующему принципу: тело движется только при наличии внешнего на него воздействия, и если это воздействие прекращается, тело останавливается. Галилей показал, что этот принцип Аристотеля (хотя и согласуется с нашим повседневным опытом) является ошибочным. Вместо него Галилей сформулировал совершенно иной принцип, получивший впоследствии наименование принципа инерции: тело либо находится в состоянии покоя, либо движется, не изменяя направления и скорости своего движения, если на него не производится какого-либо внешнего воздействия. Галилей выработал условия дальнейшего прогресса естествознания, начавшегося в эпоху Нового времени. Он установил, что Солнце вращается вокруг своей оси, а Иоган Кеплер на его поверхности имеются пятна. У самой большой планеты Солнечной системы -- Юпитера -- Галилей обнаружил 4 спутника. Наблюдения за Луной показали, что ее поверхность гористого строения и что этот спутник Земли имеет либрацию, т. е. видимые периодические колебания маятникового характера вокруг центра. Галилей убедился, что кажущийся туманностью Млечный Путь состоит из множества отдельных звезд. Однако остановить движение, прервать преемственность научной мысли было уже невозможно. Эта оценка астрономических исследований Галилея содержалась в работе Кеплера «Рассуждение о "Звездном вестнике"». Кеплер занимался поисками законов небесной механики и составлением звездных таблиц. На основе обобщения данных астрономических наблюдений он установил три закона движения планет относительно Солнца. Он разработал теорию солнечных и лунных затмений, предложил способы их предсказания, уточнил величину расстояния между Землей и Солнцем, составил так называемые Рудольфовы таблицы. Конечно, главной заслугой Кеплера было открытие законов движения планет. В такой ситуации большое впечатление на естествоиспытателей произвела «теория вихрей», выдвинутая в 40-х годах XVII века французским ученым Рене Декартом (1596-1650)15. Декарт полагал, что мировое пространство заполнено особым легким, подвижным веществом, способным образовывать гигантские вихри. Вихревые потоки, окружая все небесные тела, увлекают их и приводят в движение. Солнечная система представляет собой громадный вихрь, в центре которого находится Солнце. Этот солнечный вихрь увлекает в своем движении все планеты. Центрами других, меньших вихрей, вращающихся вокруг Солнца, являются планеты. Планетные вихри вовлекают в круговое движение спутоники этих планет. Так, вихрь, окружающий Землю, приводит в движение вокруг Земли ее спутник -- Луну. Причем в каждом вихре тело, находящееся ближе к центру, вращается вокруг него быстрее, чем более далекое. Этим Декарт объяснял тот факт, что чем ближе планеты к Солнцу, тем короче периоды их обращения вокруг него. Вторая научная революция завершалась творчеством одного из величайших ученых в истории человечества, каковым был Исаак Ньютон. Он создал дифференциального и интегрального исчисления, и важные астрономические наблюдения, которые Ньютон проводил с помощью собственноручно построенных зеркальных телескопов и большой вклад в развитие оптики. Но самым главным научным достижением Ньютона было продолжение и завершение дела Галилея по созданию классической механики. Ньютон сформулировал три основных закона движения, которые легли в основу механики как науки. Первый закон механики Ньютона -- это принцип инерции, впервые сформулированный еще Галилеем: всякое тело сохраняет состояние покоя или равномерного и прямолинейного движения до тех пор, пока оно не будет вынуждено изменить его под действием каких-то сил. Существо второго закона механики Ньютона состоит в констатации того факта, что приобретаемое телом под действием какой-то силы ускорение прямо пропорционально этой действующей силе и обратно пропорционально массе тела. Наконец, третий закон механики Ньютона -- это закон равенства действия и противодействия. Этот закон гласит, что действия двух тел друг на друга всегда равны по величины и направлены в противоположные стороны. Созданная Ньютоном теория тяготения и его вклад в астрономию знаменуют последний этап преобразования аристотелевской картины мира, начатого Коперником. Ибо представление о сферах, управляемых перводвигателем или ангелами по приказу бога, Ньютон успешно заменил представлением о механизме, действующем на основании простого естественного закона.