
- •36. Связь пределов последовательностей с арифметическими операциями.
- •37. Бесконечно малые, бесконечно большие последовательности.
- •38. Монотонные последовательности, число е
- •39. Понятие функции, области определения, значений. Способы задания функции.
- •40. Предел функции, теорема существования предела функции.
- •41. Бесконечно малые и бесконечно большие функции
- •42. Непрерывность функции в точке. Свойства непрерывных в точке функций.
- •1. Если функции и непрерывны в точке , то их сумма , произведение и частное (при условии ) являются функциями, непрерывными в точке .
- •2. Если функция непрерывна в точке и , то существует такая окрестность точки , в которой .
- •43. Точки разрыва функций.
- •44. Свойства функций, непрерывных на отрезке.
- •45. Производная функции. Её геометрический и механический смысл.
- •46. Производная суммы, произведения, частного.
- •47. Производная сложной, обратной функции. Производные сложных тригонометрических функций.
- •48. Функции, заданные параметрически и их дифференцирование.
- •49. Гиперболические функции. Их свойства и дифференцирование.
- •50. Дифференцируемость функции.
- •51. Дифференциал функции. Связь с производной, геометрический смысл.
- •52. Инвариартность формы дифференциала.
- •53. Производные высших порядков.
- •54. Формула Лейбница
- •55. Дифференциалы высших порядков.
- •56. Теоремы Ролля, Лагранжа, Коши.
- •57. Правило Лопиталя.
- •58. Формула Тейлора.
- •61. Исследование функций на экстремум при помощи производных высшего порядка.
- •62. Исследование функций на выпуклость и вогнутость. Точки перегиба функции.
- •63. Асимптоты кривых. Общая схема построения графиков функций.
52. Инвариартность формы дифференциала.
Если
,
то из (7.4) имеем
.
Рассмотрим
сложную функцию
,
где
.
Если
функции
и
дифференцируемые
функции от своих аргументов, то производная
сложной функции равна
.
Умножим
обе части равенства на
:
.
Таким образом,
.
53. Производные высших порядков.
Пусть y = f(x) является дифференцируемой функцией. Тогда производная также представляет собой функцию от x. Если она является дифференцируемой функцией, то мы можем найти вторую производную функции f, которая обозначается в виде
Аналогично, если f '' существует и дифференцируема, мы можем вычислить третью производную функции f:
Производные более высокого порядка (если они существуют), определяются как
Для нахождения производных высшего порядка можно использовать следующие формулы:
В частности, для производной второго и третьего порядка формула Лейбница принимает вид
54. Формула Лейбница
Пусть y = u·v, где u и v — некоторые функции от переменной x, имеющие производные любого порядка. Тогда
.
где
есть
число сочетаний из n элементов
по k (k =
0, 1, 2, …, n).
Доказательство. Для k =
1 имеем
для k = 2 имеем
для k = 3 имеем
Правые части полученных равенств похожи на разложения различных степеней бинома (u + v)n по формуле Ньютона, но вместо показателей степени стоят числа, определяющие порядок производных, а сами функции u и v для полной аналогии с формулой Ньютона нужно рассматривать как «производные нулевого порядка»: u(0) и v(0). Пусть формула Лейбница справедлива при k = n:
.
Докажем, что формула справедлива при k = n + 1. Действительно, в этом случае
Здесь
воспользовались свойством сочетаний
.
Изменим индекс суммирования во второй
сумме, положив k = p -
1. В этом случае
и в полученных суммах объединим попарно слагаемые, содержащие производные одинаковых порядков. После обозначения общего индекса суммирования черезр, будем иметь
.
Так
как
и
,
получим
.
55. Дифференциалы высших порядков.
Будем рассматривать dx в выражении для dy как постоянный множитель.Тогда функция dy представляет собой функцию только аргумента x и ее дифференциал в точке x имеет вид (при рассмотрении дифференциала от dy будем использовать новые обозначения для дифференциалов):
δ (d y) = δ [f ' (x) d x] = [f ' (x) d x] ' δ x = f '' (x) d(x) δx .
Дифференциал δ (d y) от дифференциала dy в точке x, взятый при δx = dx, называется дифференциалом второго порядка функции f (x) в точке x и обозначается d2y, т.е.
d2y = f ''(x)·(dx)2.
В свою очередь, дифференциал δ(d2y) от дифференциала d2y, взятый при δx = dx, называется дифференциалом третьего порядка функции f(x) и обозначается d3y и т.д. Дифференциал δ(dn-1y) от дифференциала dn-1f, взятый при δx = dx, называется дифференциалом n - го порядка (или n - м дифференциалом) функции f(x) и обозначается dny. Докажем, что для n - го дифференциала функции справедлива формула
dny = y(n)·(dx)n, n = 1, 2, … (3.1)
При доказательстве воспользуемся методом математической индукции. Для n = 1 и n = 2 формула (3.1) доказана. Пусть она верна для дифференциалов порядка n- 1
dn−1y = y(n−1)·(dx)n−1,
и функция y(n-1)(x) дифференцируема в некоторой точке x. Тогда
Полагая δx = dx, получаем
что и требовалось доказать. Для любого n справедливо равенство
или
т.е. n - я производная функции y = f ( x ) в точке x равна отношению n - го дифференциала этой функции в точке x к n - й степени дифференциала аргумента.