Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
билеты по физике 1-15..docx
Скачиваний:
6
Добавлен:
23.04.2019
Размер:
518.56 Кб
Скачать

Электромагнитное взаимодействие

Электромагни́тное взаимоде́йствие — одно из четырёх фундаментальных взаимодействий. Электромагнитное взаимодействие существует между частицами, обладающимиэлектрическим зарядом[1]. С современной точки зрения электромагнитное взаимодействие между заряженными частицами осуществляется не прямо, а только посредством электромагнитного поля.

Сильное взаимодействие

Си́льное ядерное взаимоде́йствие (цветово́е взаимоде́йствиея́дерное взаимоде́йствие) — одно из четырёх фундаментальных взаимодействий в физике. В сильном взаимодействии участвуют кварки и глюоны и составленные из них частицы, называемые адронами (барионы и мезоны). Оно действует в масштабах порядка размера атомного ядра и менее, отвечая за связь между кварками в адронах и за притяжение между нуклонами (разновидность барионов — протоны и нейтроны) в ядрах.

Слабое взаимодействие

Слабое взаимодействие, или слабое ядерное взаимодействие — одно из четырёх фундаментальных взаимодействий в природе. Оно ответственно, в частности, за бета-распад ядра. Это взаимодействие называется слабым, поскольку два других взаимодействия, значимые для ядерной физики (сильное и электромагнитное), характеризуются значительно большей интенсивностью. Однако оно значительно сильнее четвёртого из фундаментальных взаимодействий, гравитационного. Слабое взаимодействие является короткодействующим — оно проявляется на расстояниях, значительно меньших размера атомного ядра (характерный радиус взаимодействия 10−18 м[1]). Стандартная модель физики элементарных частиц описываетэлектромагнитное взаимодействие и слабое взаимодействие как разные проявления единого электрослабого взаимодействия, теорию которого разработали около 1968 года ГлэшоуСалам иВайнберг. За эту работу они получили Нобелевскую премию по физике за 1979 год.

СИЛА ТЯЖЕСТИ, сила P, действующая на любое тело, находящееся вблизи земной поверхности, и определяемая как геометрическая сумма силы притяжения Земли F и центробежной силы инерции Q, учитывающей эффект суточного вращения Земли. Направление силы тяжести - вертикаль в данной точке земной поверхности. Аналогично определяется сила тяжести на любом небесном теле. Значение силы тяжести зависит от географической широты положения тела; например, на Земле сила тяжести на полюсе и на экваторе отличаются на 0,5% (на Луне значения силы тяжести примерно в 6 раз меньше, чем на Земле; смотри Ускорение свободного падения).

F=mg

Сила трения.

Сила, возникающая в месте соприкосновения тел и препятствующая их относительному переме­щению, называется силой трения. Направление силы трения противоположно направлению движения.  Различают силу трения покоя и силу трения скольжения.

Если тело скользит по какой-либо поверхности, его движению препятствует сила трения скольжения.

   , где N — сила реакции опоры, a μ — коэффициент трения скольжения. Коэф­фициент μ зависит от материала и качества обработки соприкасающихся поверхностей и не зависит от веса тела. Коэффициент трения определяется опытным путем.

Си́ла упру́гости — сила, возникающая при деформации тела и противодействующая этой деформации.

В случае упругих деформаций является потенциальной. Сила упругости имеет электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. В простейшем случае растяжения/сжатия тела сила упругости направлена противоположно смещению частиц тела, перпендикулярно поверхности.

Вектор силы противоположен направлению деформации тела (смещению его молекул).

F=kx.