
- •Электронный курс лекций с видеоанимациями
- •Принятые обозначения
- •1. Образование проекций. Метод монжа. Проекции прямой линии
- •1.1.Проекции центральные
- •1.2. Проекции параллельные
- •1.3. Проецирование точки на две плоскости проекций. Метод Монжа
- •Линия а1а2 оси Ох и называется линией связи.
- •1.4. Проецирование точки на три плоскости проекций
- •В ортогональных проекциях проекцией точки является точка.
- •1.5. Проекции прямой линии. Классификация прямых
- •1.6. Определение натуральной величины отрезка прямой общего положения и углов наклона его к плоскостям проекций способом прямоугольного треугольника
- •1.7. Деление отрезка в пропорциональном отношении
- •1.8. Следы прямой
- •1.9. Взаимное расположение прямых
- •1.10. Проекции прямого плоского угла. Теорема о прямом угле
- •Вопросы для самопроверки
- •2. Плоскость. Способы задания плоскости на чертеже. Прямая и точка в плоскости
- •2.1. Способы задания плоскости на чертеже
- •2.2. Классификация плоскостей
- •2.3. Условие принадлежности точки и прямой линии плоскости
- •2.4. Линии особого положения в плоскости
- •Вопросы для самопроверки
- •3. Способы преобразования чертежа
- •3.1. Вращение вокруг проецирующих прямых
- •3.2. Способ плоскопараллельного перемещения
- •3.3. Способ замены плоскостей проекций. Замена одной плоскости проекций
- •3.4. Замена двух и более плоскостей проекций
- •Вопросы для самопроверки
- •4. Взаимное положение плоскостей. Взаимное положение прямой и плоскости
- •4.1. Построение линии пересечения плоскостей
- •4.2.3. Пересечение прямой общего положения с плоскостью общего положения
- •4.3. Перпендикулярность и параллельность прямой и плоскости
- •4.4. Перпендикулярность двух плоскостей
- •4.5. Параллельность двух плоскостей
- •Вопросы для самопроверки
- •5. Кривые линии и поверхности
- •5.1. Кривые линии
- •5.2. Кривые поверхности
- •5.3. Поверхности вращения
- •5.4. Циклические поверхности
- •5.5. Нахождение точек на поверхностях
- •5.6. Гранные поверхности
- •Вопросы для самопроверки
- •6. Сечение поверхностей плоскостью. Построение разверток
- •6.1. Сечение гранных поверхностей плоскостью
- •6.1.1. Сечение пирамиды плоскостью
- •6.1.2. Построение развертки наклонной призмы (наклонного цилиндра) способом нормального сечения
- •6.2. Сечение кривых поверхностей плоскостью. Построение разверток
- •6.2.1. Сечение прямого кругового конуса плоскостью (конические сечения)
- •6.2.2. Сечение цилиндра плоскостью
- •6.2.3. Построение развертки наклонного цилиндра (наклонной призмы) способом раскатки
- •6.2.4. Сечение шара плоскостью
- •Вопросы для самопроверки
- •7. Пересечение прямой линии с поверхностями
- •Вопросы для самопроверки
- •8. Взаимное пересечение поверхностей
- •8.1. Взаимное пересечение многогранников
- •8.2. Взаимное пересечение многогранника с поверхностью вращения. Способ секущих плоскостей
- •8.3. Взаимное пересечение поверхностей вращения
- •8.4. Некоторые особые случаи взаимного пересечения поверхностей
- •8.5. Способ вспомогательных секущих сфер (концентрических)
- •Вопросы для самопроверки
- •9. Аксонометрические проекции. Общие сведения
- •9.1. Построение плоской фигуры и шестигранника в изометрии
- •9.2. Стандартные аксонометрические проекции
- •Вопросы для самопроверки
- •Библиографический список
- •Учебное издание Воронцова Мария Ивановна
- •644099, Омск, ул. П. Некрасова, 10
- •644099, Омск, ул. П. Некрасова, 10
6.2.2. Сечение цилиндра плоскостью
При сечении цилиндра плоскостью образуются следующие линии (рис. 6.71 а, б): окружность, если секущая плоскость перпендикулярна оси цилиндра (β); эллипс, если секущая плоскость наклонная (α); прямые линии, если секущая плоскость параллельна образующим цилиндра (γ).
а б
Рис. 6.71
6.2.3. Построение развертки наклонного цилиндра (наклонной призмы) способом раскатки
Рис. 6.72 Анимации\Рис. 6.72.exe
Построение развертки боковой поверхности наклонного цилиндра (наклонной призмы) способом раскатки возможно тогда, когда образующие цилиндра (ребра призмы) являются прямыми уровня. Сущность способа раскатки состоит в том, что участки боковой поверхности между образующими цилиндра (ребрами призмы) совмещают с плоскостью проекций (рис. 6.73). Основание цилиндра разделяют на равные промежутки (вписывают в основание многоугольник), через точки деления проводят образующие (1,2,3, ..,6). В приведенном примере образующие цилиндра являются фронталями. От конечных точек натуральной величины образующих к ним проведены перпендикуляры, на которых циркулем сделаны засечки, равные размеру хорды окружности основания (точки 4,3,2,1,8,7,6,5). Полученные точки обводят кривой линией (или для призмы соединяют отрезками прямых). Таким образом, развертка боковой поверхнос- ти наклонного цилиндра выполняется как развертка вписанной в него наклонной призмы.
Рис. 6.73 Анимации\Рис. 6.73.exe
6.2.4. Сечение шара плоскостью
В сечении шара плоскостью всегда образуется окружность, которая может проецироваться в линию, эллипс или окружность.
На рис. 6.74 построено сечение шара фронтально-проецирующей плоскостью . На фронтальной проекции сечение проецируется в линию, на горизонтальной проекции оно проецируется в виде эллипса, для построения которого достаточно построить характерные точки сечения: высшую и низшую точки (1 и 2), крайние левую и правую (3 и 4), точки видимости (5 и 6). На фронтальной проекции отмечают точки 12 и 22 пересечения плоскости с очерком шара. По линиям связи эти точки переносят на горизонтальную проекцию (11 и 21). Для построения проекций точек 3 и 4 к секущей плоскости проводят плоскость симметрии сечения y, которая пересекает плоскость по линии 3-4 (32=42). Для построения горизонтальных проекций этих точек через точки 32 и 42 проводят вспомогательную плоскость (2), которая пересекает шар по окружности радиусом R. Точки 5 и 6, определяющие границу видимости линии сечения на горизонтальной проекции, лежат на очерковой окружности. Натуральная величина линии сечения равна окружности радиусом 1232.
Рис. 6.74 Анимации\Рис. 6.74.exe