Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_na_voprosy_po_IO_1-13 (1).doc
Скачиваний:
13
Добавлен:
22.04.2019
Размер:
477.18 Кб
Скачать
  1. Методы исследования операций.

Исследование операций -это наука, занимающаяся разработкой и практическим применением методов наиболее эффективного (или оптимального) управления организационными системами.

Предмет исследования операций -- это системы организационного управления (организации), которые состоят из большого числа взаимодействующих между собой подразделений, причем интересы подразделений не всегда согласуются между собой и могут быть противоположными.

Целью исследования операций является количественное обоснование принимаемых решений по управлению организациями.

Решение, которое оказывается наиболее выгодным для всей организации, называется оптимальным, а решение, наиболее выгодное одному или нескольким подразделениям, будет субоптимальным.

Каждое операционное исследование проходит последовательно следующие основные этапы:

1) постановка задачи,

2) построение математической модели,

3) нахождение решения,

4) проверка и корректировка модели,

5) реализация найденного решения на практике.

В самом общем случае математическая модель задачи имеет вид:

найти

max Z=F(x, y)

при ограничениях

Для нахождения оптимального решения задачи в зависимости от вида и структуры целевой функции и ограничений используют те или иные методы теории оптимальных решений (методы математического программирования).

1. Линейное программирование, если F(x, y), -- линейны относительно переменных х.

2. Нелинейное программирование, если F(x, y) или нелинейны относительно переменных х.

3. Динамическое программирование, если целевая функция F(x, y) имеет специальную структуру, являясь аддитивной или мультипликативной функцией от переменных х.

F(x)=F(x1, x2, …, xn) -- аддитивная функция, если F(x1, x2, …, xn)=, и функция F(x1, x2, …, xn) -- мультипликативная функция, если F(x1, x2, …, xn)=.

4. Геометрическое программирование, если целевая функция F(x) и ограничения представляют собой функции

5. Стохастическое программирование, когда вектор неуправляемых переменных у случаен.

В этом случае математическая модель задачи будет иметь

maxMyE=My{f(x, y)}

где My -- математическое ожидание по у; Р{gi (х) b} -- вероятность того, что выполняется условие gi (х) b.

6. Дискретное программирование, если на переменные xj наложено условие дискретности (например, целочисленности): xj -- целое, j=1,2,…,n1п.

7. Эвристическое программирование применяют для решения тех задач, в которых точный оптимум найти алгоритмическим путем невозможно из-за огромного числа вариантов. В таком случае отказываются от поиска оптимального решения и отыскивают достаточно хорошее (или удовлетворительное с точки зрения практики) решение. При этом пользуются специальными приемами -- эвристиками, позволяющими существенно сократить число просматриваемых вариантов. Эвристические методы также применяют, когда оптимальное решение в принципе может быть найдено (т.е. задача алгоритмически разрешима), однако для этого требуются объемы ресурсов, значительно превышающие наличные.

  1. Необходимые и достаточные условия безусловного экстремума. Необходимые и достаточные условия экстремума функции нескольких (двух) переменных

Рассмотрим функцию , где -- открытое множество.

Определение 1.   называется точкой максимума (минимума) функции , если

Аналогично если выполняется строгое неравенство, точка называется точкой строгого максимума (строгого минимума).

Теорема 1. (необходимое условие экстремума)   Если -- точка экстремума и существует , то .

Доказательство. Частную производную можно представить как производную функции одной переменной в точке . Для этой функции точка также является точкой экстремума. Тогда, по необходимому условию экстремума функции одной переменной .

Определение 2.   -- стационарная точка функции , если -- дифференцируема в этой точке и , или -- не дифференцируема в этой точке.

Замечание 1.   Квадратичная форма -- многочлен вида , -- положительно определена, если на положительных переменных она принимает положительные значения. Для квадратичных форм существует критерий Сильвестра: форма положительно определена, если все главные миноры ее матрицы положительны. Форма отрицательно определена, если положительно определена. Тогда главные миноры меняют знак, начиная с минуса.

Теорема 2. (достаточное условие экстремума)   Если дважды дифференцируема в стационарной точке , то -- точка минимума (максимума), если квадратичная форма положительно (отрицательно) определена. Если эта форма не определена, то экстремума в этой точке нет. Если она вырождена, то неизвестно, является ли точкой экстремума.

Доказательство. По формуле Тейлора приращение функции в точке можно записать в виде , поскольку, по необходимому условию экстремума, частные производные будут равны нулю. Перепишем выражение в виде , причем при . Заметим, что новые переменные изменяются на единичной сфере, т.к. . Кроме того, квадратичная форма непрерывна и по теореме Вейерштрасса на сфере принимает наименьшее значение, обозначим его . Пусть форма положительно определена. Тогда . Теперь благодаря тому, что при можно подобрать такое , что при выполнено , тогда выполнено в этой окрестности. Что и означает, что -- точка минимума. Для точки максимума доказательство аналогично.

Замечание 2.   В случае двух переменных матрица квадратичной формы имеет вид . Тогда если , то для положительной определенности достаточно -- тогда имеется минимум. Если же , то достигается максимум. Если же , то ничего сказать нельзя.

3.Теоремы двойственности в линейном программировании.

Теорема 1 (первая теорема двойственности)

Если одна из пары двойственных задач I и II разрешима, то разрешима и другая, причем значения целевых функций на оптимальных планах совпадают, F(x*)=G(y*), где х*, у* - оптимальные решения задачи I и II

Теорема 2 (вторая теорема двойственности)

Планы х* и у* оптимальны в задачах I и II тогда и только тогда, когда при подстановке их в систему ограничений задачи I и II соответственно, хотя бы одно из любой пары сопряженных неравенств обращается в равенство.

Д о к а з а т е л ь с т в о. Предположим, что исходная задача обладает

оптимальным планом, который получен симплексным методом. Не нарушая

общности, можно считать, что окончательный базис состоит из т первых

векторов A1, A2, ..., Am.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]