
- •Часть I
- •1. Свойства и строение металлов
- •Свойства металлов
- •Кристаллическое строение металлов
- •Типы кристаллических решеток важнейших металлических элементов
- •1.3. Дефекты строения кристаллических тел
- •1.3.1. Точечные дефекты
- •1.3.2. Линейные дефекты
- •1.3.3. Теоретическая и фактическая прочность
- •1.3.4. Поверхностные дефекты
- •2. Кристаллизация металлов
- •2.1. Энергетические условия кристаллизации
- •2.2. Механизм процесса кристаллизации
- •3. Механические свойства металлов
- •3.1. Общая характеристика механических свойств
- •3.2. Механические свойства, определяемые при статических испытаниях
- •3.3 Порог хладноломкости
- •3.4. Основные направления повышения прочности металлов. Конструктивная прочность
- •4. Деформация и разрушение металлов
- •4.1. Виды напряжений
- •4.2. Упругая и пластическая деформации металлов
- •4.3. Сверхпластичность металлов и сплавов
- •4.4. Разрушение металлов
- •5. Влияние нагрева на структуру и свойства деформированного металла
- •5.1. Возврат и полигонизация
- •5.2. Рекристаллизация
- •5.3. Холодная и горячая деформации
- •6. Строение и свойства типовых двухкомпонентных сплавов
- •6.1. Понятие о физико-химическом анализе
- •6.2. Диаграмма состояния систем с полной растворимостью компонентов в твердом состоянии
- •6.3. Применение правила отрезков
- •6.5. Внутрикристаллическая ликвация
- •6.5. Диаграммы состояния систем с ограниченной растворимостью компонентов в твердом состоянии с эвтектическими и перитектическими превращениями
- •6.6. Понятие об эвтектоидном и перитектоидном превращениях.
- •6.7. Диаграммы состояния системы, образующей химическое соединение.
- •7. Железо и сплавы на его основе
- •7.1. Компоненты и фазы в системе железо-углерод
- •7.2. Диаграмма состояния железо-цементит (метастабильное равновесие)
- •7.3. Диаграмма состояния железо-графит
- •7.4. Углеродистые стали
- •8. Углеродистые стали
- •8.1. Влияние углерода на свойства стали
- •8.2. Влияние примесей на свойства стали
- •8.3. Классификация углеродистых сталей
- •8.4. Стали обыкновенного качества
- •8.5. Качественные углеродистые стали
- •9. Чугуны
- •9.1. Виды чугунов
- •9.2. Факторы, способствующие графитизации
- •9.3. Микроструктура и свойства чугуна
9.2. Факторы, способствующие графитизации
Графитизацией называется процесс выделения графита при кристаллизации или охлаждении сплавов железа с углеродом. Графит может образовываться как из жидкой фазы при затвердевании чугуна, так и из твердой фазы. Образование графита происходит согласно диаграмме системы Fe-С. Ниже линии C'D' образуется первичный графит, по линии E'C'F' – эвтектический графит и по линии P'S'K' – эвтектоидный графит.
Графитизация чугуна зависит от ряда факторов. К ним относятся присутствующие в чугуне центры графитизации, скоростьохлаждения и химический состав чугуна.
Образование графита в объеме чугуна энергетически маловероятно, так как прирост свободной энергии при образовании новой межфазной поверхности больше, чем ее уменьшение при кристаллизации. Работа образования зародышей графита облегается при наличии центров графитизации - различных мельчайших включений и примесей, взвешенных в жидкой фазе и аустените. Такими мельчайшими частицами могут быть оксиды Аl2O3, SiO2, нитриды типа AlN и нерастворившиеся частицы графита. Параметры кристаллической решетки центров графитизации должны быть близки к кристаллической решетке графита.
Влияние скорости охлаждения обусловлено тем, что графитизация чугуна является диффузионным процессом и протекает медленно. Значительная длительность процесса графитизации обусловлена необходимостью реализации нескольких стадий: образования центров графитизации в жидкой фазе или аустените, диффузии атомов углерода к центрам графитизации и роста выделений графита. При графитизации цементита добавляется необходимость предварительного распада Fe3C и растворения углерода в аустените. Чем медленнее охлаждение чугуна, тем большее развитие получает процесс графитизации.
В одной и той же отливке чугун может иметь различную структуру. В топких частях отливки, где выше скорость кристаллизации и охлаждения, чугун имеет меньшую степень графитизации, чем в массивных. Быстрое охлаждение способствует получению белого чугуна, более медленное -серого чугуна.
В некоторых случаях для достижения высокой твердости и сопротивления износу специально получают отбеленную зону в чугунной отливке. Для этого в литейную форму вставляют металлические холодильники, обеспечивающие высокую скорость затвердевания и охлаждения с образованием цементита. Так поступают при отливке чугунных лемехов, устанавливая холодильники в тех местах, где расположены лезвие и носок.
Из примесей, входящих в состав чугуна, наиболее сильное положительное влияние на графитизацию оказывает кремний. Содержание кремния в чугуне колеблется от 0,5 до 4-5 % Меняя содержание кремния, можно получать чугуны, совершенно различные по структуре и свойствам.
Из других элементов, входящих в состав чугуна, наиболее важную роль играют марганец, сера и фосфор.
Марганец препятствует графитизации, увеличивая склонность чугуна к отбеливанию. Содержание марганца в чугуне обычно не более 0.5-1.0 %.
Сера является вредной примесью в чугуне. Ее отбеливающее влияние в 5-6 раз выше, чем марганца. Кроме того, сера снижает жидкотекучесть, способствует образованию газовых пузырей, увеличивает усадку и склонность к образованию трещин.
Влияние фосфора в чугуне существенно отличается от его влияния в стали. Хотя фосфор почти не влияет на графитизацию, он является полезной примесью, увеличивая жидкотекучесть серого чугуна за счет образования легкоплавкой (950-980 °С) фосфидной эвтектики.
Обычно используют чугуны следующего химического состава, %: 3,0-3,7 С, 1-3 Si, 0,5-1,0 Мn, менее 0,3 Р и 0,15 S.
Иногда в чугун вводят легирующие элементы (Ni, Сг и др.), улучшая его свойства. В СССР имеются Орско-Халиловское и Елизаветинское рудные месторождения, дающие природнолегированные чугуны, содержащие, %: до 3 Сr, 1 Ni, 0,2 Ti или 0,2 V.
Таким образом, основными факторами, определяющими степень графитизации чугуна, являются содержание углерода, кремния и скорость охлаждения. Регулируя химический состав и скорость охлаждения, можно получить в отливке нужную структуру чугуна.