- •1 Вопрос
- •2 Вопрос Обратная матрица
- •3 Вопрос
- •4 Вопрос
- •5 Вопрос Свойства определителей
- •6 Вопрос
- •7 Вопрос
- •8 Вопрос Метод Гаусса
- •9 Билет
- •10 Вопрос
- •11 Вопрос Векторное уравнение прямой
- •12 Вопрос Канонические уравнения прямой
- •13 Вопрос Общее уравнение прямой
- •14 Вопрос Уравнение прямой с угловым коэффициентом
- •15 Вопрос Уравнение прямой в отрезках на прямой
- •16 Вопрос Урав-ние прямой, проход. Через данную точку с данным угловым коэффициентом
- •17 Вопрос Урав-ние прямой, проход. Через две точки
- •18 Вопрос
- •19 Вопрос Взаимное расположение двух прямых на плоскости
- •20 Вопрос Расстояние от точки до прямой
- •21 Вопрос Окружность
- •22 Вопрос Эллипс
- •23 Вопрос Гипербола
- •24 Вопрос Парабола
- •25 Вопрос Векторы в пространстве
- •26 Вопрос Скалярное произведение векторов и свойства
- •27 Вопрос Векторное произведение векторов и их свойства
- •28 Вопрос Смешанное произведение векторов и их свойства
- •29 Вопрос Общее уравнение плоскости
- •30 Вопрос
- •Расстояние от точки до плоскости
- •31 Вопрос Угол между плоскостями
- •32 Вопрос Общее и каноническое уравнение прямой в пространстве
- •33 Вопрос Условие парал-сти и перпен-сти двух прямых в пространстве. Угол между прямыми
- •Условия параллельности и перпендикулярности двух прямых:
- •34 Вопрос Условие параллельности и перпендик-сти прямой и плоскости
- •35 Вопрос Понятие функции. Свойства задания и основные свойства
- •36 Вопрос Основные элементарные функции
- •37 И 38 вопрос Область определения и область значений функции
- •Из этого определения следует, что функция считается заданной, если:
- •40 Вопрос График функции
- •41 Вопрос Обратная функция
- •42 Вопрос Сложная функция
- •Фактически эта запись означает следующую цепочку функциональных преобразований:
- •43 Вопрос Элементарные функции
- •Основные элементарные функции
- •44 Вопрос Предел функции в точке
- •Признаки существования предела
- •45 Вопрос Бесконечно малые и большие функции и их свойства
- •46 Вопрос Теоремы о пределах
- •Предел алгебраической суммы конечного числа функций равен такой же сумме пределов этих функций, т.Е.
- •Предел произведения конечного числа функций равен произведению пределов этих функций, т.Е.
- •Предел частного двух функций равен частному пределов этих функций (при условии, что предел делителя не равен нулю), т.Е.
- •47 Вопрос Основные приемы вычисления пределов
- •48 Вопрос
- •Первый замечательный предел
- •49 Вопрос Второй замечательный предел
- •50 Вопрос Эквивалентные бесконечно малые
- •51 Вопрос
- •Непрерывность функции
- •Свойства функций, непрерывных в точке
- •1. Если функции и непрерывны в точке , то их сумма , произведение и частное (при условии ) являются функциями, непрерывными в точке .
- •2. Если функция непрерывна в точке и , то существует такая окрестность точки , в которой .
- •52 Вопрос Точки разрыва функции
- •Свойства функций, непрерывных на отрезке
35 Вопрос Понятие функции. Свойства задания и основные свойства
Функцией
называется закон, по которому числу х
из заданного множества Х, поставлено в
соответствие только одно число у, пишут
,
при этом x называют аргументом функции,
y называют значением функции.
Существуют
разные способы задания функций.
1.
Аналитический способ.
Аналитический
способ - это наиболее часто встречающийся
способ задания функции.
Заключается
он в том, что функция задается формулой,
устанавливающей, какие операции нужно
произвести над х, чтобы найти у. Например
.
Рассмотрим
первый пример -
.
Здесь значению x = 1 соответствует
,
значению x = 3 соответствует
и
т. д.
Функция может быть задана на
разных частях множества X разными
функциями.
Например:
Во
всех ранее приведенных примерах
аналитического способа задания, функция
была задана явно. То есть, справа стояла
переменная y, а справа формула от
переменной х. Однако, при аналитическом
способе задания, функция может быть
задана и неявно.
Например
.
Здесь, если мы задаем переменной x
значение, то, чтобы найти значение
переменной у (значение функции), мы
должны решить уравнение. Например, для
первой заданной функции при х = 3, будем
решать уравнение:
.
То есть, значение функции при х = 3 равно
-4/3.
При аналитическом
способе задания, функция может быть
задана параметрически - это, когда х и
у выражены через некоторый параметр t.
Например,
Здесь
при t = 2, x = 2, y = 4. То есть, значение функции
при х = 2 равно 4.
2. Графический
способ.
При графическом способе
вводится прямоугольная система координат
и в этой системе координат изображается
множество точек с координатами (x,y). При
этом
.
Пример:
3.
Словесный способ.
Функция задается
с помощью словесной формулировки.
Классический пример – функция
Дирихле.
«Функция равна 1, если х
– рациональное число; функция равна 0,
если х – иррациональное число».
4.
Табличный способ.
Табличный способ
наиболее удобен, когда множество Х
конечно. При этом способе составляется
таблица, в которой каждому элементу из
множества Х, ставится в соответствие
число Y.
Пример:
Табличный
способ задания функции очень удобен
при обработке результатов исследований.
Основные свойства функции. 1) Четность и нечетность. Функция называется четной, если для любых значений из области определения и нечетной, если . В противном случае функция называется функцией общего вида.
Пример.
а) Функция
б)
Функция
в)
Функция
|
|
График четной функции симметричен относительно оси ординат, а график нечетной функции симметричен относительно начала координат.
2) Монотонность. Функция называется возрастающей (убывающей) на промежутке , если большему значению аргумента из этого промежутка соответствует большее (меньшее) значение функции. Функции возрастающие и убывающие называются монотонными функциями.
Пример.
1) Функция
-
на интервале
2)
Функция
|
|
3) Ограниченность.
Функция
называется ограниченной
на промежутке
, если
существует такое положительное число
,
что
для любого
.
В противном случает функция называется
неограниченной.
- ограничена на всей числовой оси, т.к. для любого .
4) Периодичность.
Функция
называется периодической
с периодом
,
если для любых
из
области определения функции
.
Пример.
|
|
