
- •1.Графики и свойства основных элементарных функций.
- •2.Предел функции.
- •3. Основные теоремы о пределах.
- •4 Непрерывность функции в точке и на интервале.
- •5. Точки разрыва первого и второго рода.
- •6. Производная и дифференциал.
- •7. Основные теоремы о дифференцируемых функциях.
- •8. Функция нескольких переменных и их непрерывность.
- •9 Производные функций нескольких переменных.
- •10. Дифференциалы функции нескольких переменных.
- •12. Поиск экстремума функции нескольких переменных.
- •13 Неопределенный интеграл, основные теоремы.
- •14. Определенный интеграл, основные теоремы.
- •15.Интегрирование подстановкой (замены переменных). Интегрирование по частям.Интегрирование рациональных функций.
- •16.Прямая линия на плоскости.
- •17.Эллипс
- •18 Гипербола
- •19..Парабола
- •20.Прямая и плоскость в пространстве
- •21. Системы линейных уравнений.
- •24.Определители, свойства.
- •22..Матрицы, классификация.
- •23..Операции над матрицами
- •25. Обратная матрица: определение и алгоритм вычисления.
- •27. Системы векторов, операции над ними.????????
- •28. Ранг матрицы
- •29. Линейные операторы и матрицы
- •30. Собственные векторы линейных операторов
- •31 Определители. Крамер.
- •32. Решиение системы матричной формы
- •33. Метод Гаусса.
21. Системы линейных уравнений.
Система m линейных уравнений с n переменными имеет вид:
где aij, bi (i =1..m; j =1..n) – произвольные числа, называемые соответственно коэффициентами при переменных и свободными членами уравнений.
Решением системы (1) называется такая совокупность n чисел (x1=k1, x2=k2, … xn=kn), при подстановке которых в (1) каждое уравнение системы обращается в верное равенство.
Система уравнений называется совместной, если она имеет хотя бы одно решение, и несовместной, если она не имеет решений.
Совместная система, называется определенной, если она имеет единственное решение, и неопределенной, если она имеет более одного решения.
Например:
Исходная система в матричной форме. Обозначим:
где А – матрица коэффициентов при переменных, или матрица системы, Х – матрица-столбец переменных; В – матрица-столбец свободных членов.
Систему можно записать в виде: АХ=В.
24.Определители, свойства.
Определители квадратной матрицы:
Каждой квадратной матрице А, можно поставить в соответствие вычисленное по определенным правилам число, называемое определителем квадратной матрицы.
Определителем матрицы первого порядка А=(а11) или определителем первого порядка называется элемент а11. Обозначается Δ1 = а11 или│А│= а11.
Определителем матрицы второго порядка или определителем второго порядка называется число, которое вычисляется по формуле: Δ2 = │А│= а11а22 – а12а21 .
Определителем матрицы третьего порядка
или определителем третьего порядка называется число, которое вычисляется по формуле: Δ3 = │А│= а11а22 а33+а12а23а31+а21а32а13– а31а22а13– а12а21а33 – а32а23а11.
Теорема (частный случай теоремы Лапласа). Определитель квадратной матрицы равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения:
Δ=ai1Ai1+ai2Ai2+…+ainAin. Значение теоремы состоит в том, что позволяет свести вычисление определителей n-го порядка к вычислению более простых определителей (n-1)-го порядка.
Свойства:
1.Если какая-либо строка (столбец) матрицы состоит из одних нулей, то её определитель равен нулю.
2.Если все элементы какой-либо строки (столбца) матрицы умножить на число λ, то её определитель умножится на это число λ.
3. При транспонировании матрицы её определитель не изменится.
4. При перестановке 2-х строк (столбцов) матрицы её определитель меняет знак на противоположный.
5. Если матрица содержит две одинаковые строки (столбца), то её определитель равен нулю.
6. Если элементы двух строк (столбцов) матрицы пропорциональны, то её определитель равен нулю.
7. Определитель матрицы не изменится, если к элементам любой строки (столбца) прибавить элементы другой строки (столбца), предварительно умноженной на любое число.
8. Сумма произведений элементов какой-либо строки (столбца) матрицы на алгебраические дополнения элементов другой строки (столбца) этой матрицы равна нулю.
9. Определитель произведения двух квадратных матриц равен произведению их определителей: │АВ│=│А││В│.