
- •1.Графики и свойства основных элементарных функций.
- •2.Предел функции.
- •3. Основные теоремы о пределах.
- •4 Непрерывность функции в точке и на интервале.
- •5. Точки разрыва первого и второго рода.
- •6. Производная и дифференциал.
- •7. Основные теоремы о дифференцируемых функциях.
- •8. Функция нескольких переменных и их непрерывность.
- •9 Производные функций нескольких переменных.
- •10. Дифференциалы функции нескольких переменных.
- •12. Поиск экстремума функции нескольких переменных.
- •13 Неопределенный интеграл, основные теоремы.
- •14. Определенный интеграл, основные теоремы.
- •15.Интегрирование подстановкой (замены переменных). Интегрирование по частям.Интегрирование рациональных функций.
- •16.Прямая линия на плоскости.
- •17.Эллипс
- •18 Гипербола
- •19..Парабола
- •20.Прямая и плоскость в пространстве
- •21. Системы линейных уравнений.
- •24.Определители, свойства.
- •22..Матрицы, классификация.
- •23..Операции над матрицами
- •25. Обратная матрица: определение и алгоритм вычисления.
- •27. Системы векторов, операции над ними.????????
- •28. Ранг матрицы
- •29. Линейные операторы и матрицы
- •30. Собственные векторы линейных операторов
- •31 Определители. Крамер.
- •32. Решиение системы матричной формы
- •33. Метод Гаусса.
15.Интегрирование подстановкой (замены переменных). Интегрирование по частям.Интегрирование рациональных функций.
Интегрирование этим методом заключается в приведении данного интеграла к новому путем замены переменной интегрирования х на новую переменную z. Пусть х = g(z), тогда dx = g( z)dz. Поэтому f(х) dx = f [g(z)] g(z) dz = Ф (z) +С = Ф [g-1(х)] + С.
Пусть u(x) и v(x) – две функции от х, имеющие непрерывные производные, тогда справедлива следующая формула: udv = uv - vdu.
Эта формула называется формулой интегрирования по частям и позволяет свести данный интеграл к более простому.
Пример:
Функция называется рациональной, если ее можно представить в виде отношения двух многочленов. Например, если R(x) — рациональная функция одной переменной x, то
Здесь индексы у Pm(x) и Qn(x) указывают степени этих многочленов.
Многочлены являются рациональными функциями (у них знаменатели тождественно равны единице). Если рациональная функция не является многочленом, то она называется дробной.
Рациональная функция называется правильной, если степень многочлена в числителе меньше степени многочлена в знаменателе и неправильной, если степень многочлена в числителе больше либо равна степени многочлена в знаменателе.
Неправильная рациональная функция представима в виде
где Lm − n — многочлен степени (m − n) , называемый целой частью рациональной функции. Он находится путем деления многочлена Pm на Qn . Многочлен Us — остаток при этом делении.
При интегрировании рациональных функций используется следующая теорема о разложении рациональной функции:
Теорема Правильную рациональную функцию одной переменной x можно единственным образом представить в виде суммы элементарных дробей
где A , M , N , a , p , q — действительные числа и k — натуральные числа.
В этой сумме каждому действительному нулю a кратности k знаменателя Qn(x) соответствуют k слагаемых
Каждой паре комплексно сопряженных нулей кратности k знаменателя Qn(x) (являющихся нулями квадратного трехчлена x2 + 2px + q ) соответствуют k слагаемых
Представление правильной рациональной функции в виде суммы элементарных дробей называется разложением на элементарные дроби.
Коэффициенты элементарных дробей, фигурирующих в разложении, однозначно определяются условием тождественности правильной рациональной функции и ее разложения.
16.Прямая линия на плоскости.
Уравнение вида F(x,y)=0 есть уравнение линии на плоскости, если координаты всех точек, лежащих на этой линии удовлетворяют этому уравнению, а координаты точек, не лежащих на этой линии – не удовлетворяют.
Уравнение прямой, заданное уравнением первой степени общего вида Ax+By+C=0, называется уравнением прямой общего вида
Рассмотрим случаи:
В=0 → Ах+С=0 → прямая параллельная оси ОУ. В≠0 → Ву= -Ах-С → y=kx+b уравнение прямой с угловым коэффициентом, где k=-A/B, b=- C/B.
Угловым коэффициентом прямой называется тангенс угла, на который нужно повернуть против часовой стрелки ось Ох вокруг начала координат О, чтобы прямая стала параллельна этой оси.
Уравнение прямой с угловым коэффициентом
если в=0, →у=кх - уравнение пучка прямых, проходящих через начало координат.
если к=0, →у=в прямая параллельная оси Ох.
если к=0, в=0, →у=0 - уравнение оси Ох.
Уравнение прямой, проходящей через заданную точку (уравнение пучка прямых)
Любую прямую не параллельную оси Оу можно записать в виде у=кх+в.
Пусть прямая проходит через точку М(х0,у0). тогда справедливо у0=кх0+в. Вычтем у-у0=к(х-х0)
Ураснение прямой,проходящей через 2 заданные точки:
М1(х1,у1) →у-у1=к(х-х1) М2(х2,у2) →у-у2=к(х-х2) Поделим почленно
Уравнение прямой в отрезках на осях Ах+Ву+С=0 (2)
Если N(а,0) принадлежит прямой → Аа+С=0 (*) Если M(0,в) принадлежит прямой → Вв+С=0 (**)
Найдем из (*) и (**) А и В Подставив в (2) получим
Расстояние d от точки М0(х0,у0) до прямой, заданной уравнением общего вида Ax+By+C=0 определяется по формуле: