Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
БИЛЕТЫ+ОТВЕТЫ(ЯРИК).doc
Скачиваний:
29
Добавлен:
20.04.2019
Размер:
3.25 Mб
Скачать

Билет №3

  1. Тяга в пустоте

  2. Головки камер ЖРД и их конструкция

Тяга ракетного двигателя в пустоте.

Вывод формулы тяги ракетного двигателя базируется на 3-м законе Ньютона, при условии, что поток рабочего тела по тракту рассматривается ста­ционарным.

Стационарным называется движение, при котором расход газа во всех поперечных сечениях канала одинаков и не зависит от времени, а параметры газа в указанных сечениях, включая входное, постоянны и также не являются функцией времени.

Тяга реактивного двигателя является равнодействующей сил давления газов на внутренние и наружные поверхности камеры двигателя. Она возникает в результате преобразования химической энергии топлива в кинетическую энергию, истекающих из камеры, продуктов сгорания.

Тяга в пустоте - =0, рис.5

Рис.5

Определим результирующую силу , воздействующую на стенки камеры двигателя

где Fa - площадь среза сопла, м2 :

Воспользуемся теоремой импульсов - импульс силы равен измене­нию количества движения:

где: - масса израсходованного топлива, тн - начальная масса

двигательной установки, тк - конечная масса двигательной установки; - время работы двигательной установки; Wc, Wa - скорости газового потока на входе в сопло и на его срезе, со­ответственно, так как Wa >> Wс.

где т - массовый секундный расход, кг/с;

где: - тяга ракетного двигателя в пустоте, Н;

Wэ.п. - эффективная скорость истечения в пустоте, м/с;

Головки камер ЖРД и их конструкция

Головка камеры двигателя является главным узлом, обеспечивающим правильную организацию смесеобразования в камере сгорания. Конструкция головки должна обеспечить устойчивое горение в камере, а также способствовать плавному выходу двигателя на режим и уменьшению импульса последействия. При проектировании головки должно быть осуществлено необходимое размещение и надежное крепление форсунок, наиболее удобный под­вод компонентов к форсункам и технологически возможно более простое со­единение головки с камерой сгорания. На головке располагаются устройства для ввода в камеру топлива. Жидкое топливо подается в камеру форсунками, а в случае применения схемы с дожиганием газа, поступающего из ТНА, или при подаче топлива (например, перекиси водорода) в газообразном состоянии - через специальные окна, выполненные в головке. При двухкомпонентном жидком топливе головка имеет днe полости. В двигателях с регулированием тяги путем отключения групп форсунок эти полости могут иметь дополнительные перегородки, позволяющие отдельно подводить топливо к различным группам форсунок.

На головке размещаются также узлы крепления двигателя, клапаны, служащие для запуска, отсечки и регулирования тяги двигателя, а в ряде случа­ев и антивибрационные устройства, и воспламенители.

Основным требованием к конструкции головки является обеспечение заданных условий смесеобразования и защиты стенок камеры от чрезмерного нагрева и прогара. Эти задачи, как указывалось, решаются рациональным раз­мещением форсунок на головке, выбором производительности отдельных групп форсунок и их характеристик, а также надлежащим охлаждением двига­теля. Одновременно конструкция головки должна обладать достаточной жест­костью несмотря на ослабление ее стенок большим количеством отверстий под форсунки, обеспечивать возможность подвода компонентов с минимальным гидравлическим сопротивлением и иметь надежную защиту от перегрева горя­чими газами.

Для наилучшего смешения компонентов на головке желательно раз­местить максимально возможное число форсунок. Минимальное расстояние между форсунками определяется условиями прочности стенки головки, усло­виями размещения в теле головки каналов для подвода компонентов, если го­ловка не имеет общей полости компонента, и, наконец, размерами форсунки. При центробежных форсунках определяющим фактором является размер фор­сунки, так как жесткость головки может быть обеспечена включением корпуса форсунки в силовую схему, а подвод компонентов в большинстве случаев осу­ществляется из общей полости. При струйных форсунках, имеющих относи­тельно малые размеры, минимальный шаг определяется при данном угле распыла расстоянием от поверхности головки зоны соударения струй или условиями подвода компонента. В выполненных конструкциях при центробежных форсунках шаг составляет 6-30 мм, а при струйных форсунках минимальный шаг может быть доведен до 3 - 4 мм.

Тот или иной способ размещения форсунок выбирается либо на осно­вании имеющегося опыта смешения компонентов топлива данного состава, либо из чисто конструктивных соображений, включающих подвод топлива и жесткость головки.

Основными конструктивными элементами головки являются форсу­ночное днище и наружная стенка. В свою очередь форсуночное днище чаще бывает двухстенным и реже - одностенным. При двухстенном форсуночном днище головка в целом является трехстенной. Тогда стенку форсуночного днища, обращенную к камере сгорания, называют внутренней или огневой, а вторую средней.

Одним из основных требований, предъявляемых к конструкции голов­ки, является обеспечение достаточной ее жесткости, а также сохранения герметичности ее элементов при возможных деформациях.

Головки камер ЖРД подразделяются на плоские, шатровые, сфериче­ские, цилиндрические и вихревые, рис.34.

Плоские головки являются наиболее распространенным типом. Плоские головки камеры имеют различное конструктивное оформле­ние.- Иногда их выполняют трехстенной конструкции с отдельными полостями для горючего и окислителя. Верхнее днище обычно имеет шаровидную форму, тогда как последние два днища — плоские, в которых монтируют форсунки. При этом: компонент топлива, используемый для охлаждения камеры, поступа­ет в нижнюю полость головки, образуемую плоскими днищами, откуда через форсунки впрыскивается в камеру сгорания. Второй компонент топлива пода­ется прямо в верхнюю полость головки, образуемую шарообразным верхним и плоским средним днищами, а из нее затем поступает в камеру сгорания через сквозные трубки, пересекающие плоские днища головки и заканчивающиеся форсунками. Все три днища головки камеры связаны между собой. Верхнее днище связывается со средним плоским днищем косынками различной формы, а для связи плоских днищ можно использовать точечные выштамповки или развальцовку корпуса форсунок. Так как число форсунок обычно бывает весь­ма большим (измеряется сотнями), то последний способ связи между собой оболочек практически оказывается также достаточно надежным.

Конструктивное оформление головки в основном зависит от вы­бранной формы камеры сгорания, ее диаметра, вида компонентов топлива, а также от того, какой компонент топлива используется для охлаждения камеры. Плоские головки применяются в камерах двигателей малых и средних тяг. Они наиболее удобны для цилиндрических камер сгорания благодаря конструктив­ной простоте и удобству расположения на них струйных и центробежных фор­сунок горючего и окислителя. Плоские головки в сочетании с цилиндрической камерой сгорания обеспечивают хорошую однородность поля скоростей и кон­центрацию компонентов топлива по поперечному сечению камеры.

Рис.34