Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
БИЛЕТЫ+ОТВЕТЫ(ЯРИК).doc
Скачиваний:
29
Добавлен:
20.04.2019
Размер:
3.25 Mб
Скачать

Аблирующие тзп

При организации теплозащиты абляцией материал стенок должен об­ладать высокой теплотой плавления или сублимации и в то же время - низ­кой теплопроводностью. В этом случае количество тепла, отводимого уноси­мым материалом, преобладает над количеством тепла, аккумулируемого в сохраняющихся слоях материала стенок.

При расчете характеристик ЖРД, сопло которого имеет теплозащиту абляцией, необходимо учитывать изменение площади проходных сечений со­пла (прежде всего критического ) по времени.

Теплозащитные покрытия, полученные на основе полимерных мате­риалов, являются практически единственными теплозащитными системами, позволяющими наиболее эффективно защищать конструкцию ДУ от воздейст­вия высокотемпературных газовых потоков.

Указанное обстоятельство определяется многообразием форм погло­щения тепловой энергии полимерными материалами в результате их плавле­ния, сублимации и деструкции.

Большинство исследователей при рассмотрении механизма работы полимерных ТЗП указывает на образование при термодеструкции в полимер­ных покрытиях трёх подвижных зон взаимодействия со средой:

  • зона, непосредственно примыкающая к газовому потоку;

  • переходная зона, в которой происходят основные реакции пиролиза полимеров;

- зона практической незатронутости материала.

Теплозащитные свойства полимерных ТЗП складываются из их спо­ собности поглощать и задерживать тепло (химические факторы абляции) и противостоять механической эрозии газовой струи (механические факторы абляции).

Факторы химической абляции. Тепло, подводимое к поверхности ТЗП, первоначально поглощается за счёт большой теплоёмкости полимеров, а скорость продвижения изотермы ограничивается малой теплопроводностью. Однако замедление продвижения тепла вглубь материала приводит к резкому увеличению температуры в поверхностных зонах покрытий, что ускоряет де­струкцию материала полимеров.

Дальнейшее поглощение части тепловой энергии, подводимой к ТЗП, осуществляется за счёт различных фазовых превращений, претерпеваемых полимерным материалом в процессе прохождения термодеструкции. Выде­ляющиеся при термодеструкции газообразные продукты, диффундируя в ок­ружающую среду, охлаждают нагретые внешние слои материала, тем самым дополнительно поглощая ещё некоторое количество тепловой энергии. Указанный "термоблокирующий" эффект зависит от количества материала подвергнутого деструкции; скорости абляции материала и энтальпии газового потока. Кроме того, немаловажное значение на величину поглощённого тепла оказывают состав и количество газообразных продуктов деструкции. Наи­больший теплрпоглощающей способностью отличаются летучие продукты, содержащие большое количество водорода.

Следующий возможный фактор, в результате которого поглощается ещё некоторая часть тепловой энергии - поглощение тепла за счёт излучения нагретой поверхностью. В данном случае тепловое излучение зависит, в ос­новном, от степени нагрева поверхности материала и определяется уравне­нием Стефана-Больцмана, как функция температуры поверхности в 4-й степе­ни. Отсюда следует, что наибольшей излучательной способностью должны обладать полимерные материалы, у которых процессы абляции сопровожда­ются более высоким нагревом поверхности (т.е. материалы, содержащие неор­ганические наполнители, различные обуглероженные материалы и т.п.).

Исходя из вышеизложенного, следует, что тепловой баланс на по­верхности аблирующего ТЗП состоит из слагаемых поглощения подводимого тепла за счёт:

  • теплоёмкости полимеров;

  • химических реакций (фазовых переходов);

- выделения летучих продуктов деструкции и излучения. При этом следует отметить, что указанные реакции имеют место только в двух первых подвижных зонах, тогда как третья зона (зона незатро­нутого материала) несёт на себе функции теплоизоляционного и конструкци­онного материала.

Механические факторы разрушения обусловлены в основном терми­ческими и механическими эффектами. Согласно работам ряда исследователей, разрушение полимерных ТЗП, их эрозионный унос, складывается из разруше­ния материалов вследствие больших термических напряжений, сублимации, испарения, а также чисто механической эрозии покрытий.

Устойчивыми оказались ТЗП, полученные на основе коксующихся полимером, способных образовывать при термодеструкции прочный поверх­ностный слой, предохраняющий нижележащие слой полимера от интенсивно­го разрушения. Величина и прочность образованного поверхностного слоя в ряде случаев является единственной определяющей величиной эрозионной стойкости полимерных ТЗП. Одним из наиболее эффективных методов уп­рочнения поверхностного слоя ТЗП, образованного при термодеструкции кок­сующихся полимеров, оказалось отложение в порах кокса вторичных продук­тов. При термодиструкции подавляющего большинства полимерных ТЗП в струе ЖРД создаются благоприятные термические условия для получения пироуглерода (пиролитического графита), отложение которого на внутренней поверхности стенок пор способствует значительному улучшению физико-механических и теплофизических свойств поверхностного слоя ТЗП. В лите­ратуре приводится прямая взаимосвязь между способностью полимеров обра­зовывать пироуглерод и эрозионной стойкостью ТЗП. Наиболее прочный по­верхностный слой образуется при термодиструкции полимерных ТЗП, полу­ченных на основе коксующихся полимеров и содержащих в своём составе большое количество атомов углерода. Кроме того, на прочностные характери­стики твёрдых продуктов пиролиза существенное влияние оказывает количе­ственное содержание в полимере кислорода, способного вызывать преждевре­менное окисление образующихся при пиролизе обуглероженных продуктов.

На эрозионную стойкость полимерных ТЗП определённое влияние, помимо прочности поверхностных слоев, образующихся при термодиструк­ции, оказывает величина механической прочности ТЗП в исходном состоянии. Экспериментально доказано, что чем больше прочность полимера (величина его разрывного напряжения), тем дольше период разрушения материала. Од­нако, исходя из механизма эрозии, представляющего собой процесс разруше­ния материала за счёт упругих и пластических деформаций, следует ожидать, что указанное равенство справедливо лишь в случае сохранения материалом некоторой эластичности. Положительное влияние эластичности полимеров на их эрозионную стойкость состоит в уменьшении абразивного износа покры­тий за счёт срезывающих усилий, имеющих место при проявлении пластиче­ской деформации.

Таким образом, основными требованиями предъявляемыми к поли­мерным материалам, предназначенным для создания ТЗП, являются:

  • высокие температуры плавления или разложения;

  • низкий коэффициент теплопроводности и высокая теплоёмкости;

  • большая излучательная способность;

  • выделение при пиролизе большого количества низкомолекулярных газообразных продуктов;

  • образование при пиролизе прочного твёрдого остатка;

  • высокая прочность и небольшая величина жёсткости полимеров.