Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
БИЛЕТЫ+ОТВЕТЫ(ЯРИК).doc
Скачиваний:
29
Добавлен:
20.04.2019
Размер:
3.25 Mб
Скачать

Форкамерный способ воспламенения горючих смесей

Для более плавного запуска с форкамерным устройством больших камер двигателей в атмосферных условиях при включении основного расхода топлива предпочтительнее опережение подачи окислителя.

В современных ЖРД необходимая мощность тепловыделения для гарантированного воспламенения горючих смесей требует пусковых расходов для форкамерного устройства примерно на два - три порядка меньше, чем расходы основной камеры.

Форкамерные устройства для воспламенения горючих смесей по сравнению с другими способами имеют то преимущество, что могут быть включены и в период останова двигателя. Это способствует принудительному догоранию топлива, попадающего в камеру двигателя из заклапанных полостей после закрытия главных топливных клапанов.

Термоакустический способ воспламенения горючих смесей основан на эффекте разогрева газа в тупиковой полости при набегании на ее открытый торец струи холодного газа со сверхзвуковой скоростью, рис.91.

Рис.91

Принципиальная схема термоакустического устройства для воспламенения горючих смесей:

1 - сверхзвуковое сопло; 2 - корпус; 3 - дренажная полость; 4 - цилиндрическая

Тупиковая полость; 5 - реакционная полость; 6 - фланец крепления

Если подавать холодный газ через сопло 1 в открытый торец цилиндрической тупиковой полости 4, который затем дренируется через полость 3, то во внутренней полости цилиндра образуются колебания газа с частотой, соответствующей собственной акустической частоте цилиндрической тупиковой полости. Усиление амплитуд колебаний давления газа в цилиндре вызывается резонансом вынужденных и собственных колебаний в динамической системе «сопло — полость».

Турбулентное течение газов из сопла 1 со сверхзвуковой скоростью при встрече с неподвижной средой сопровождается широким спектром колебаний давления газа в струе. В этом спектре также содержатся колебания с частотой, равной (или близкой) частоте собственных акустических колебаний цилиндрической тупиковой полости. Колебания давления газа в набегающей струе являются вынужденными по отношению к собственным колебаниям цилиндрической тупиковой полости. Настройка динамической системы «сопло -полость», вызывающая резонанс этих колебаний, производится изменением расстояния «х» от сопла до открытого торца тупиковой полости. Таким образом определяется взаимное положение сопла и цилиндра, обеспечивающее сдвиг фаз между вынужденными и собственными колебаниями, равными (или близкими) 180°. При этом в цилиндре тупиковой полости устанавливается максимальная амплитуда колебаний давления колебаний газа. В результате усиления амплитуды колебаний газа в тупиковой полости цилиндра в каждой волне сжатия повышается температура газа и с течением времени за счет большой (собственной) частоты циклов колебаний в цилиндрической тупиковой полости температура одной и той же порции газа намного превышает температуру торможения газовой струи. В результате происходит разогрев стенок цилиндра и особенно закрытого торца тупиковой полости до температур, которые соответствуют установившемуся тепловому балансу цилиндра. Из опытов получено, что за время, приблизительно равное 50 с, торец тупиковой полости нагревается до 1ООО К; за время 100 с - до 1500 К и более, вплоть до расплавления материала тупиковой полости (если не будет организован теплоотвод). Использование термоакустического эффекта разогрева тупиковой полости от холодной струи газа состоит в том, что по достижении необходимой температуры нагреваемого цилиндра на его поверхность направляются пусковые порции несамовоспламеняющихся окислителя и горючего, которые воспламеняются на ней, а затем из реакционной полости 5 подаются в виде нагретых продуктов сгорания в основную камеру двигателя. В результате реализуется форкамерное устройство, которое крепится к форсуночной головке двигателя фланцем 6, представляющее собой автономный агрегат системы воспламенения топлив в камерах двигателя и газогенератора ЖРДУ. Работоспособность такого устройства обеспечивается при давлении подачи холодного газа в сверхкритическое сопло 1 в диапазоне (4 — 15) 105 Па при атмосферном противодавлении в дренажной полости 3. Принципиально цилиндрическая тупиковая полость 4 может быть помещена в полость газогенератора или камеры двигателя без реакционной полости 5 и может служить нагревным источником воспламенения основного топлива.

Недостатком термоакустического способа воспламенения горючих смесей является низкая мгновенная мощность тепловыделения и низкий термический коэффициент полезного действия. Усиление мощности тепловыделения возможно путем многокаскадной подачи пускового топлива в реакционной камере форкамерного устройства, или за счет увеличения числа нагревательных цилиндров, помещенных в газогенераторы или камеры двигателя. Низкий термический КПД приводит к значительному расходу холодного газа.

Положительным свойством термоакустического устройства следует считать его полную независимость от характера протекания рабочих процессов в камере двигателя или газогенераторах. Нагревный цилиндр полностью изолирован от воздействия на него окружающей среды. Выполненный из жаропрочных и антикоррозионных материалов, он оказывается защищенным от агрессивной среды, нагарообразования, воздействия высоких и низких температур, давления и влажности окружающей среды и других внешних факторов.

Свойства автономности термоакустического устройства позволяют предполагать его преимущественное применение при низких начальных температурах окружающей среды (например в космических условиях) для надежного воспламенения несамовоспламеняющихся топлив и в низкотемпературных газогенераторах, использующих жидкий кислород и жидкий водород.

Электрические способы воспламенения горючих смесей предполагают применение высоковольтных искровых свечей и низковольтных свечей поверхностного нагрева.

Высоковольтная свеча искрового разряда получила широкое распространение в двигателях внутреннего сгорания и других атмосферных двигателях, и ее применение в ЖРД обусловлено естественной исторической преемственностью. Поскольку бортовая система питания электроэнергией располагает низковольтным источником постоянного тока, то для его преобразования в ток высокого напряжения необходимо применение специальных устройств.

Рис.92