
- •Аналіз коефіцієнтів цільової функції задач лінійного програмування.
- •Аналіз розв’язків лінійних економіко-математичних моделей. Оцінка рентабельності продукції. Доцільність введення нової продукції.
- •12.Етапи математичного моделювання.
- •Аналіз обмежень дефіцитних і недефіцитних ресурсів.
- •Властивості розв’язків задачі лінійного програмування. Геометрична інтерпретація задач лінійного програмування.
- •Геометрична інтерпретація задачі цілочислового програмування.
- •Градієнтні методи розв’язання задач нелінійного програмування та їх класифікація.
- •Графічний метод розв’язування задач нелінійного програмування.
- •Гра в чистих стратегіях. Поняття сідлової точки і її знаходження.
- •Гра 2х2 в змішаних стратегіях. Алгоритм розв’язування задачі.
- •13.Загальна постановка задачі лінійного програмування. Приклади економічних задач лінійного програмування.
- •14.Застосування теорем двоїстості в розв’язуванні задач лінійного програмування.
- •15.Зведення гри двох осіб до задачі лінійного програмування.
- •16.Знаходження розв’язку задачі лінійного програмування. Алгоритм симплексного методу.
- •17.Квадратична функція та її властивості.
- •18.Математична постановка задачі динамічного програмування, її економічний зміст. Принцип оптимальності Беллмана.
- •19.Метод Гоморі.
- •21.Методи розв’язування задач динамічного програмування. Основні кроки алгоритму розв’язування задачі динамічного програмування.
- •22.Метод Франка-Вульфа. Алгоритм розв’язування задачі нелінійного програмування.
- •23.Модель задачі лінійного програмування в розгорнутому і скороченому вигляді, а також в матричній і векторній формах.
- •24.Необхідність використання математичного моделювання економічних процесів.
- •25.Означення планів задачі лінійного програмування (допустимий, опорний, оптимальний).
- •26.Основні поняття теорії ігор. Гра двох гравців з нульовою сумою, правила гри, ціна гри, пара оптимальних стратегій для двох осіб.
- •27.Основні рекурентні співвідношення розв’язування задач динамічного програмування.
- •28.Платіжна матриця. Основна теорема теорії ігор. Принцип мінімаксу.
- •Нехай маємо скінченну матричну гру з платіжною матрицею
- •29.Побудова опорного плану задачі лінійного програмування, перехід до іншого опорного плану.
- •30. Поняття адаптації та адаптивних систем.
- •31.Поняття про опуклі функції. Геометрична інтерпретація задачі опуклого програмування на площині.
- •32.Постановка задачі нелінійного програмування, математична модель. Геометрична інтерпретація.
- •33.Постановка задачі квадратичного програмування та її математична модель.
- •34.Принципи моделювання соціально-економічних систем і процесів.
- •35. Проблеми оцінювання адекватності моделі
- •36. Симплексний метод із штучним базисом. Ознака оптимальності плану із штучним базисом.
- •37.Сідлова точка та необхідні і достатні умови її існування. Теорема Куна-Таккера.
- •39. Сутність адекватності економіко-математичних моделей
- •40.Сутність економіко-математичної моделі.
- •41.Сутність оптимізаційних моделей. Приклади економічних задач математичного програмування.
- •42.Теореми двоїстості, їх економічна інтерпретація.
- •43.Теорема про оптимальність розв’язку задачі лінійного програмування симплекс-методом.
- •44.Цілочислове програмування. Область застосування цілочислових задач в плануванні й управлінні виробництвом.
- •1.Аналіз коефіцієнтів цільової функції задач лінійного програмування.
- •2.Аналіз розв’язків лінійних економіко-математичних моделей. Оцінка рентабельності продукції. Доцільність введення нової продукції.
21.Методи розв’язування задач динамічного програмування. Основні кроки алгоритму розв’язування задачі динамічного програмування.
22.Метод Франка-Вульфа. Алгоритм розв’язування задачі нелінійного програмування.
Розглянемо метод Франка — Вульфа, процедура якого передбачає визначення оптимального плану задачі шляхом перебору розв’язків, які є допустимими планами задачі.
Нехай необхідно відшукати
за лінійних обмежень:
;
Нехай розв’язок лінійної задачі дав значення цільової функції F0, тоді з точки Х0 в напрямку F0 необхідно рухатись доти, поки не припиниться зростання цільової функції. Тобто у зазначеному напрямку вибирають наступну точку Х1, цільова функція знову замінюється на лінійну, і знову розв’язується задача лінійного програмування.
за умов:
;
.
Нехай
розв’язком такої задачі є точка
.
З
початкової точки
в
напрямку
рухаємося
з деяким довільним кроком
,
визначаючи координати нової точки
у
такий спосіб:
Зауважимо,
що значення параметра
доцільно
вибирати таким, що дає найбільше значення
цільової функції початкової задачі
.
Для точки Хk+1 повторюємо розглянутий процес, для чого знову розраховуємо значення градієнта.
23.Модель задачі лінійного програмування в розгорнутому і скороченому вигляді, а також в матричній і векторній формах.
Задачу
лінійного програмування зручно записувати
за допомогою знака суми «».
Справді,задачу можна подати так:
за
умов:
Щекомпактнішим
є запис задачі лінійного програмування
у векторно-матричному вигляді: max(min)
Z
= CX
max(min)
Z
= CXза
умов: АХ
= А0;
Х ≥0,де
є
матрицею коефіцієнтів при змінних;
— вектор змінних;
— вектор вільних членів;С
= (с1,
с2,
…, сп)
— вектор коефіцієнтів при змінних у
цільовій функції.Часто задачу лінійного
програмування зручно записувати у
векторній формі:max(min)Z
= CXза
умов: A1x1
+ A2x2
+ … + Anxn
= A0де
є
векторами коефіцієнтів при змінних.
24.Необхідність використання математичного моделювання економічних процесів.
За цільовим призначенням ЕММ поділяються на теоретико-аналітичні, застосовувані для дослідження загальних властивостей і закономірностей економічних процесів (наприклад, модель Кейнса), та прикладні, призначені для розв’язування конкретних економічних задач (моделі економічного аналізу, прогнозування, управління тощо).
ЕММ можуть бути призначені для дослідження як різних функціональних складових економіки (виробничо-технологічної, соціальної, територіальної структури), так і його окремих частин. Розглядають моделі всієї економіки в цілому та її підсистем — секторів, галузей, регіонів, комплексів моделей виробництва, споживання, формування та розподілу прибутків, трудових ресурсів, ціноутворення, фінансових зв’язків тощо.
Згідно із загальною класифікацією математичних моделей вони поділяються на функціональні та структурні, охоплюючи проміжні форми (структурно-функціональні). У дослідженнях на макрорівні найчастіше використовуються структурні моделі, оскільки для планування та управління велике значення мають взаємозв’язки підсистем. Типовими структурними моделями є моделі міжгалузевих зв’язків. Функціональні моделі широко застосовуються в економічному регулюванні, коли на поводження об’єкта («вихід») впливають, змінюючи «вхід». Прикладом може бути модель поведінки споживачів за умов товарно-грошових відносин. Один і той самий об’єкт може описуватися водночас як структурною, так і функціональною моделлю.