- •Аналіз коефіцієнтів цільової функції задач лінійного програмування.
- •Аналіз розв’язків лінійних економіко-математичних моделей. Оцінка рентабельності продукції. Доцільність введення нової продукції.
- •12.Етапи математичного моделювання.
- •Аналіз обмежень дефіцитних і недефіцитних ресурсів.
- •Властивості розв’язків задачі лінійного програмування. Геометрична інтерпретація задач лінійного програмування.
- •Геометрична інтерпретація задачі цілочислового програмування.
- •Градієнтні методи розв’язання задач нелінійного програмування та їх класифікація.
- •Графічний метод розв’язування задач нелінійного програмування.
- •Гра в чистих стратегіях. Поняття сідлової точки і її знаходження.
- •Гра 2х2 в змішаних стратегіях. Алгоритм розв’язування задачі.
- •13.Загальна постановка задачі лінійного програмування. Приклади економічних задач лінійного програмування.
- •14.Застосування теорем двоїстості в розв’язуванні задач лінійного програмування.
- •15.Зведення гри двох осіб до задачі лінійного програмування.
- •16.Знаходження розв’язку задачі лінійного програмування. Алгоритм симплексного методу.
- •17.Квадратична функція та її властивості.
- •18.Математична постановка задачі динамічного програмування, її економічний зміст. Принцип оптимальності Беллмана.
- •19.Метод Гоморі.
- •21.Методи розв’язування задач динамічного програмування. Основні кроки алгоритму розв’язування задачі динамічного програмування.
- •22.Метод Франка-Вульфа. Алгоритм розв’язування задачі нелінійного програмування.
- •23.Модель задачі лінійного програмування в розгорнутому і скороченому вигляді, а також в матричній і векторній формах.
- •24.Необхідність використання математичного моделювання економічних процесів.
- •25.Означення планів задачі лінійного програмування (допустимий, опорний, оптимальний).
- •26.Основні поняття теорії ігор. Гра двох гравців з нульовою сумою, правила гри, ціна гри, пара оптимальних стратегій для двох осіб.
- •27.Основні рекурентні співвідношення розв’язування задач динамічного програмування.
- •28.Платіжна матриця. Основна теорема теорії ігор. Принцип мінімаксу.
- •Нехай маємо скінченну матричну гру з платіжною матрицею
- •29.Побудова опорного плану задачі лінійного програмування, перехід до іншого опорного плану.
- •30. Поняття адаптації та адаптивних систем.
- •31.Поняття про опуклі функції. Геометрична інтерпретація задачі опуклого програмування на площині.
- •32.Постановка задачі нелінійного програмування, математична модель. Геометрична інтерпретація.
- •33.Постановка задачі квадратичного програмування та її математична модель.
- •34.Принципи моделювання соціально-економічних систем і процесів.
- •35. Проблеми оцінювання адекватності моделі
- •36. Симплексний метод із штучним базисом. Ознака оптимальності плану із штучним базисом.
- •37.Сідлова точка та необхідні і достатні умови її існування. Теорема Куна-Таккера.
- •39. Сутність адекватності економіко-математичних моделей
- •40.Сутність економіко-математичної моделі.
- •41.Сутність оптимізаційних моделей. Приклади економічних задач математичного програмування.
- •42.Теореми двоїстості, їх економічна інтерпретація.
- •43.Теорема про оптимальність розв’язку задачі лінійного програмування симплекс-методом.
- •44.Цілочислове програмування. Область застосування цілочислових задач в плануванні й управлінні виробництвом.
- •1.Аналіз коефіцієнтів цільової функції задач лінійного програмування.
- •2.Аналіз розв’язків лінійних економіко-математичних моделей. Оцінка рентабельності продукції. Доцільність введення нової продукції.
33.Постановка задачі квадратичного програмування та її математична модель.
До задач квадрат-о програмув-я належать задачі,які мають лінійні обмеж-я,а функціонал являє собою суму лінійної і квадрат-ї функцій:
Квадрат-а ф-ія n змінних назив-ся квадрат-ю формою і може бути подана у вигляді:
,де
,
,
,
причому матриця С завжди симетрична,тобто Cij=Cji для всіх i,j=1,n.
34.Принципи моделювання соціально-економічних систем і процесів.
Властивості розв’язків задачі лінійного програмування формулюються у вигляді чотирьох теорем Властивість 1. (Теорема 2.2) Множина всіх планів задачі лінійного програмування опукла.Властивість 2. (Теорема 2.3) Якщо задача лінійного програмування має оптимальний план, то екстремального значення цільова функція набуває в одній із вершин її багатогранника розв’язків. Якщо ж цільова функція набуває екстремального значення більш як в одній вершині цього багатогранника, то вона досягає його і в будь-якій точці, що є лінійною комбінацією таких вершин.
Властивість 3. (Теорема 2.4) Якщо відомо, що система векторів A1, A2, …, Ak (k ≤ n) у розкладі A1x1 +A2x2 + … + Anxn = A0, X ≥ 0 лінійно незалежна і така, що
A1x1 + A2x2 + … + Akxk = A0,
де всі xj ≥ 0, то точка X = (x1, x2, …, xk, 0, …, 0) є кутовою точкою багатогранника розв’язків.Властивість 4. (Теорема 2.5) Якщо X = (x1, x2, …, xn) — кутова точка багатогранника розв’язків, то вектори в розкладі A1x1 + + A2x2 + … + Anxn = A0, X ≥ 0, що відповідають додатним xj, є лінійно незалежними.
35. Проблеми оцінювання адекватності моделі
Математичні методи перевірки можуть виявляти некоректність підходу до побудови моделі і тим самим звужувати клас потенційно правильних моделей. Неформальний аналіз теоретичних висновків і числових результатів, які одержують за допомогою моделі, зіставлення їх із знаннями, якими володіємо, і фактами дійсності також дозволять знаходити недоліки постановки економічної задачі, сконструйованої математичної моделі, її інформаційного і математичного забезпечення.Взаємозв’язки етапів. Звернімо увагу на зворотні зв’язки етапів, які виникають унаслідок того, що в процесі дослідження виявляються недоліки попередніх етапів моделювання.Уже на етапі побудови моделі може з’ясуватися, що постановка задачі суперечлива і призводить до надто складної математичної моделі. Відповідно до цього постановка економіко-математичної задачі коригується. Подальший математичний аналіз моделі може показати, що невелика модифікація постановки задачі чи її формалізації дає корисний аналітичний результат.Найчастіше необхідність повернення до попередніх етапів моделювання виникає під час підготовки вихідної інформації. Може виявитися, що необхідна інформація відсутня чи затрати на її підготовку занадто великі. Тоді доводиться повертатися до постановки задачі та її формалізації, змінюючи їх так, щоб пристосуватися до наявної інформації.Оскільки економіко-математичні задачі можуть бути складними за своєю структурою, мати велику розмірність, то часто трапляється, що відомі алгоритми і програми для комп’ютерів не дозволяють розв’язати задачу у первісному вигляді. Якщо неможливо за короткий термін розробити нові алгоритми і програми, то вихідну постановку задачі та відповідну модель спрощують: знімають і об’єднують умови, кількість чинників, нелінійні співвідношення замінюють лінійними тощо.Недоліки, які не вдається виправити на проміжних етапах моделювання, усуваються в наступних циклах. Але результати кожного циклу мають і цілком самостійне значення. Почавши дослідження від побудови простої моделі, можна швидко одержати корисні результати, а потім перейти до створення більш досконалої моделі, яка доповнюється новими умовами, котрі включають уточнені математичні залежності.
