
- •41. Электрорецепция.
- •42. Как влияет удаление малозначащих признаков из обучающей выборки на процесс обучения нейросети? Пример на эвм.
- •43. Пространственная конфигурация биополимеров. Типы объемных взаимодействий в белковых макромолекулах. Водородные связи.
- •44. Хеморецепция.
- •45. Показать последовательность обучения и тестирования нейронной сети. Что такое внешняя выборка.
- •46. Взаимодействие макромолекул с растворителем. Состояние воды и гидрофобные взаимодействия в биоструктурах.
- •47. Восприятие запахов: пороги, классификация запахов.
- •48. Каким параметром характеризуется быстрота затухания колебаний, и какие процессы в живой природе имеют колебательный характер
- •49. Особенности пространственной организации белков и нуклеиновых кислот. Модели фибрилляторных и глобулярных белков. Качественная структурная теории белка.
- •50. Бактериородопсин как молекулярный фотоэлектрический генератор.
- •51. По каким физическим параметрам классифицируются биопотенциалы и какие требования предъявляются к усилителям биопотенциалов в этой связи.
- •52. Структура и функционирование биологических мембран. Мембрана как универсальный компонент биологических систем.
- •53. Вкус. Вкусовые качества. Строение вкусовых клеток.
- •55. Бислойные мембраны. Протеолипосомы. Поверхностный заряд мембранных систем.
- •56. Фотохимические превращения родопсина. Рецепторные потенциалы.
- •57. Описать методику выполнения измерений длительности сенсомоторных реакций (р-тест).
- •58. Антиоксиданты, механизм их биологического действия. Естественные антиоксиданты тканей и их биологическая роль.
- •59. Закон Вебера-Фехнера.
- •60. Как проверить экспериментально закон Вебера-Фехнера.
58. Антиоксиданты, механизм их биологического действия. Естественные антиоксиданты тканей и их биологическая роль.
Антиоксиданты (антиокислители) — ингибиторы окисления, природные или синтетические вещества, способные тормозить окисление (рассматриваются преимущественно в контексте окисления органических соединений). Антиоксиданты — вещества, защищающие биологические системы от окисления за счет взаимодействия со свободными радикалами.
Механизмы действия
Окисление углеводородов, спиртов, кислот, жиров и др. кислородом воздуха представляет собой цепной процесс. Цепные реакции превращений осуществляются с участием активных свободных радикалов — перекисных (RO2*), алкоксильных (RO*), алкильных (R*). Для цепных разветвленных реакций окисления характерно увеличение скорости в ходе превращения (автокатализ). Это связано с образованием свободных радикалов при распаде промежуточных продуктов — гидроперекисей и др.
Механизм действия наиболее распространённых антиоксидантов (ароматические амины, фенолы, нафтолы и др.) состоит в обрыве реакционных цепей: молекулы А. взаимодействуют с активными радикалами с образованием малоактивных радикалов. Окисление замедляется также в присутствии веществ, разрушающих гидроперекиси (диалкилсульфиды и др.). В этом случае падает скорость образования свободных радикалов. Даже в небольшом количестве (0,01—0,001 %) антиоксиданты уменьшают скорость окисления, поэтому в течение некоторого периода времени (период торможения, индукции) продукты окисления не обнаруживаются. В практике торможения окислительных процессов большое значение имеет явление синергизма — взаимного усиления эффективности антиоксидантов в смеси, либо в присутствии других веществ.
Антиоксиданты широко применяют на практике. Окислительные процессы приводят к порче ценных пищевых продуктов (прогорканию жиров, разрушению витаминов), потере механической прочности и изменению цвета полимеров (каучук, пластмассы, волокно), осмолению топлива, образованию кислот и шлама в турбинных и трансформаторных маслах и др. Для увеличения стойкости пищевых продуктов, содержащих жиры и витамины, используют природные антиоксиданты — токоферолы (витамины Е), нордигидрогваяретовую кислоту и др. — и синтетические антиоксиданты — пропиловый и додециловый эфиры галловой кислоты, бутилокситолуол (ионол) и др.
59. Закон Вебера-Фехнера.
Закон Вебера — Фехнера — эмпирический психофизиологический закон, заключающийся в том, что интенсивность ощущения пропорциональна логарифму интенсивности стимула. Закон Вебера — Фехнера можно объяснить тем, что константы скорости химических реакций проходящих при рецептировании нелинейно зависят от концентрации химических посредников физических раздражителей или собственно химических раздражителей.
Для живого организма характерно свойство раздражимости, т.е. способность отвечать на раздражение. Любое раздражение имеет свои основные параметры (интен-ть, длит-ть, градиент и т.д.), которое проявляется в деятельности анализаторов. Анализатор (как система) состоит из 3-х частей - периферический конец, проводник и корковый конец.
В 1834г. Э.Вебер уст-л для ряда анализаторов закон постоянства отношения I/I, где I- миним-й воспринимаемый прирост раздражения к его исходной величине, т.е. новый раздражитель, чтобы отличаться по ощущениям от предыдущего, должен отличаться от исходного на величину, пропорциональную исходному раздражителю:
∆m1/m1≈∆m2/(∆m1+m2) ≈∆m3/(∆m2+m3)
Так, чтобы два предмета воспринимались как различные по весу, их вес должен различаться на 1/30, а не на x грамм.