
- •1.Проблемные ситуации и их классификация
- •6. Задача о наилучшем использовании ресурсов
- •7.Задача о распределения персонала (о назначения)
- •8. Транспортная задача открытого и закрытого типа
- •9. Задача о движении автобусов
- •10. Математическая модель задачи линейного программирования
- •11.Формы записи задачи линейного программирования
- •12.Линейное векторное пространство. Линейная зависимость векторов. Ранг.
- •13.Понятие базиса системы. Базисное и опорное решение системы.
- •14.Отыскание исходного опорного базиса
- •15.Переход от одного опорного решения к другому
- •16.Каноническая форма задачи линейного программирования
- •17. Приведение задачи линейного программирования к канонической форме
- •18. Геометрический смысл задачи линейного программирования
- •19. Свойства решений задачи линейного программирования (без док)
- •24. Основная идея симплекс-метода решения злп и ее теоретическое обоснование
- •25. Теорема о возможности улучшения опорного решения задачи лп
- •26. Условие применимости симплекс-метода и теорема о неограниченности целевой функции на одз
- •27. Структура симплекс таблицы
- •28. Алгоритм симплексного метода решения злп
- •29. Контроль за правильностью решения злп симплекс-методом
- •30. Понятие о вырождении. Причины зацикливания в симплекс-методе
- •31. Понятие двойственности в линейном программировании. Правила построения двойственных задач
- •32.Леммы и теоремы двойственности (без док)
- •33. Применение двойственных задач
- •34. Связь между решениями прямой и двойственной задачи на примере пары симметричных задач
- •35.Экономическая интерпретация двойственных задач (на примере). Экономический смысл 1-ой теоремы двойственности
- •36. Оптимальные двойственные оценки и их смысл в задаче об использовании ресурсов.
- •37. Анализ моделей на устойчивость и чувствительность
- •38. Метод искусственного базиса
- •39. Основные понятия теории игр
- •40. Антагонистические игры, седловая точка
- •41. Чистые и смешанные стратегии матричных игр с нулевой суммой, платежная функция
- •42. Теорема о необходимом и достаточном условии существования решения антагонистической игры
- •43. Правила упрощения матричной игры
- •44. Решение матричной игры 2x2
- •45. Геометрическое решение матричной игры Mx2, 2xN
- •46. Приведение матричной игры к задаче линейного программирования
- •47. Статистические игры. Критерии для принятия решений
- •48.Общая постановка задачи нелинейного программирования
- •49. Геометрическая интерпретация задачи нелинейного программирования
- •50. Геометрический способ решения задачи нелинейного программирования
- •51.Глобальный (абсолютный) и локальный экстремум функции
- •52.Условный экстремум функции
- •53. Метод неопределенных множителей Лагранжа.
- •54. Определение выпуклой и вогнутой функции
- •55. Общая постановка задачи выпуклого программирования. Теорема о существовании решения задачи вп (формулировка)
- •56. Седловая точка функции Лагранжа
- •57. Теорема Куна-Таккера
- •58.Основная идея градиентных методов решения знлп
- •59.Метод Франка –Вульфа
- •60. Метод штрафных функций
- •61. Метод наискорейшего спуска
- •62. Определение сепарабельной функции
- •63. Кусочно-линейная аппроксимация
- •64. Задача целочисленного программирования, методы ее решения
- •65. Задача дробно-линейного программирования, геометрическая интерпретация и метод решения
- •66. Постановка задачи параметрического программирования и принципы ее решения
- •67. Постановка задачи динамического программирования
- •68. Задачи, приводящие к задаче динамического программирования
- •69. Принцип оптимальности Беллмана
- •70. Связь проблемы выбора с задачами лп, нлп, игр
16.Каноническая форма задачи линейного программирования
Канонической формой записи ЗЛП называют задачу
; (2.24)
,
(2.25)
.
(2.26)
Существуют 5 основных признаков представления задачи линейного программирования в канонической форме:
1) минимизация целевой функции (2.24);
2) запись системы ограничений в виде строгих равенств (2.25);
3) условие неотрицательности на все переменные (2.26);
4) наличие в системе ограничений исходного базиса;
5) неотрицательность всех свободных членов в системе ограничений.
17. Приведение задачи линейного программирования к канонической форме
1. если исходная ф-я бала на max, то *(-1) и исследуем ее на min
2. Если в неравенстве стоит знак <= то в это нер-во добавляется новый х со знаком «+», если знак >= то со знаком «-»
18. Геометрический смысл задачи линейного программирования
Геометрическая интерпретация задач дает возможность наглядно представить их структуру, выявить особенности и открывает пути исследования более сложных свойств.
область допустимых решений задачи есть выпуклое множество.
Система совместна, поэтому полуплоскости, как выпуклые множества, пересекаясь, образуют общую часть, которая является выпуклым множеством и представляет собой совокупность точек, координаты каждой из которых являются решением данной системы. Совокупность этих точек (решений) наз. многоугольником решений – это точка, отрез, луч, многоугольник, неограниченной многоугольной областью.
геометрическая задача линейного программирования представляет собой отыскание такой точки многогранника рещений, координаты которой доставляют линейной функции минимальное значение, причем допустимыми решениями служат все точки многогранника решений.
геометрической интерпретации целевой функции: уравнение семейства параллельных прямых, называемых линиями уровня целевой функции (линиями постоянного значения).
19. Свойства решений задачи линейного программирования (без док)
Т е о р е м а 1. Множество всех планов задачи линейного программирования выпукло.
Т е о р е м а 2. Линейная функция задачи линейного программирования достигает своего минимального значения в угловой точке многогранника рещений. Если линейная функция принимает минимальное значение более чем в одной угловой точке, то она достигает того же значения в любой точке, являющейся выпуклой линейной комбинацией этих точек.
20. Доказать, что множество допустимых решений ЗЛП является выпуклым множеством
Множество наз выпуклым если с любыми двумя точками оно содержит их произвольную линейную комбинацию.
Множество наз замкнутым если оно содержит в себе граничные точки
Точка наз. угловой если она не может быть представлена виде дух линейных комбинаций его других точек.
21. Доказать, что оптимум целевой функции ЗЛП, если он существует, достигается хотя бы в одной из вершин допустимого множества
22. Условие существования оптимального решения задачи линейного программирования
23. Метод прямого перебора решения ЗЛП
Если известна функциональная связь целевой функции Y и искомой переменной X, то можно последовательно вычислить значения целевой функции для некоторых значений искомой переменной. Вычисления повторяются до тех пор, пока не будет найден min (max) значения целевой функции
Y=f(x1, ..., xi, ..., xn, u1, ..., uj, ..., um),
xi=x0i+xik (k=0, 1, 2, ..., l).
Этот метод может быть использован для решения задач исследования операций, если имеются одна искомая переменная или несколько с небольшим диапазоном изменения искомых переменных.
Особенность и преимущества метода прямого перебора заключаются: 1) в независимости поиска от вида и характера целевой функции; 2) в цикличности поисковой процедуры; 3) в определении глобального экстремума целевой функции; 4) в простоте алгоритма и программы оптимизации; 5) в малом объеме необходимой машинной памяти.
В случае большой области изменения искомой переменной и (или) наличия более чем одного экстремума исследуемой функции использование этого метода неэффективно.