
- •1. Тепловые эффекты химических реакций. Экзотермические и эндотермические реакции. Теплоты сгорания и образования.
- •Шпаргалки (шпора) по Химии.
- •2. Закон Гесса. Следствия из закона Гесса.
- •Теплота растворения.
- •Энтропия и её изменения при химических процессах и фазовых периодах.
- •Кинетика. Понятие о скорости химических реакций. Гомогенные и гетерогенные системы.
- •Факторы, влияющие на скорость химической реакции
- •Зависимость скорости реакции от концентрации реагирующих веществ. Закон действующих масс в гомогенной и гетерогенной системах.
- •Влияние температуры на скорость реакции. Энергия активации.
- •Катализ. Теория промежуточных соединений
- •Химическое равновесие. Константа химического равновесия.
- •Смещение химического равновесия при изменении концентрации веществ и температуры. Принцип Ле Шателье.
- •Общие понятия о дисперсных системах и растворах. Классификация дисперсных систем.
- •12. Образование растворов. Классификация растворов.
- •Растворы неэлектролитов. 2 закон Рауля.
- •Явление осмоса. Осмотическое давление.
- •16. Основы электролитической диссоциации. Константа диссоциации.
- •17. Растворы электролитов. Степень диссоциации и её зависимость от концентрации растворённого вещества (закон разбавления Оствальда) и температуры.
- •18. Способы выражения концентрации.
- •2 Ответ
- •20. Ионное произведение воды, pH растворов.
- •2 Ответ
- •21. Гидролиз солей.
- •22. Степень гидролиза. Влияние условий на степень полноты гидролиза: природа веществ, температура и концентрация веществ.
- •24. Адсорбция на поверхности раствор-газ. Уравнение Гиббса
- •25. Адсорбция газов и растворенных веществ твердыми сорбентами. Уравнение Френдлиха и Ленгмюра.
- •В некоторых случаях применяется уравнение Ленгмюра вида:
- •2. Уравнение изотермы адсорбции теории бэт
- •В некоторых случаях применяется уравнение Ленгмюра вида:
- •2. Уравнение изотермы адсорбции теории бэт
18. Способы выражения концентрации.
Количественный состав раствора чаще всего выражается с помощью понятия «концентрации», под которым понимается содержание растворенного вещества (в определенных единицах) в единице массы или объема.
Договорились растворенное вещество обозначать через X, а растворитель - через S.
Чаще всего для выражения состава раствора используют массовую долю, молярную концентрацию (молярность) и мольную долю.
Массовая доля - это отношение массы растворенного вещества к общей массе раствора. Для бинарного раствора:
(1)
где ω(Х) - массовая доля растворенного вещества X; m(Х) масса растворенного вещества X, г; m(S) - масса растворителя S, г; m= [m(Х) + m(S)] - масса раствора, г.
Массовую долю выражают в долях единицы или в процентах (например: ω = 0,01 или ω = 1%).
Молярная концентрация (молярность) показывает число молей растворенного вещества, содержащегося в 1 литре раствора:
С(Х) = v(Х) / V, (2)
где С(Х) - молярная концентрация растворенного вещества X, моль/л; v(Х) - количество растворенного вещества X, моль; V - объем раствора, л.
Как следует из (2), молярная концентрация выражается в моль/л. Эта размерность иногда обозначается М, например: 2МNаОН.
Мольная доля растворенного вещества - безразмерная величина, равная отношению количества растворенного вещества к общему количеству веществ в растворе:
(3)
где N(Х) - мольная доля растворенного вещества X; v(Х) - количество растворенного вещества X, моль; v(S) - количество вещества растворителя S, моль.
Нетрудно представить, что сумма мольных долей растворенного вещества и растворителя равна 1:
N(X) + N(S) = 1. (4)
При решении многих задач полезно переходить от молярной концентрации к массовой доле, мольной доле и т.д. Например, молярная и процентная концентрации взаимосвязаны так:
C(X) = 10 ∙ ω(X) ∙ ρ / M(X), (5)
ω(X) = C(X) ∙ M(X) / (10 ∙ ρ) (6)
где ω(Х) - массовая доля растворенного вещества, выраженная в %; М(Х) - молярная масса растворенного вещества, г/моль; р = m/(1000 V) - плотность раствора, г/мл.
Очень часто концентрацию насыщенного раствора, наряду с вышеперечисленными характеристиками, выражают через так называемый коэффициент растворимости или просто растворимость вещества.
Отношение массы вещества, образующего насыщенный раствор при данной температуре, к массе растворителя называют коэффициентом растворимости:
ks = mв-ва / mр-ля . (7)
Растворимость вещества s показывает максимальную массу вещества, которая может раствориться в 100 г растворителя:
s = (mв-ва / mр-ля) ∙ 100.
19. Диссоциация кислот, оснований и солей в воде.
Кислотаминазываются электролиты, диссоциирующие в водных растворах с образованием ионов водорода и не дающие никаких других положительно заряженных ионов. При диссоциации анионы кислоты наряду с катионами водорода образуются анионы кислотного остатка. Например: От наличия ионов водорода зависят кислотные свойства растворов. Кислота тем сильнее, чем больше в растворе концентрация ионов водорода. Общие свойства кислот: 1) способность взаимодействовать с основаниями с образованием солей; 2) способность взаимодействовать с некоторыми металлами с образованием водорода; 3) способность изменять цвета индикаторов, в частности, вызывать красную окраску лакмуса; 4) кислый вкус.
Электролитическая диссоциация – распад электролитов на ионы при растворении в воде или расплавлении. Этот процесс изображают с помощью уравнений диссоциации:
NaCl = Na+ + Cl-
HCl = H+ + Cl-
Na2SO4 = 2Na+ + SO42-
Если через раствор или расплав электролита пропускать электрический ток, то положительные ионы будут двигаться к отрицательному электроду – катоду. Положительные ионы получили название катионы.
Отрицательные ионы будут двигаться к положительному электроду – аноду, и называются анионами.
Следовательно, при диссоциации солей образуются катионы металла и анионы кислотного остатка (в состав солей могут входить и другие ионы). При диссоциации кислот образуются в качестве катионов ионы водорода, и анионы кислотных остатков.
Механизм диссоциации электролитов при растворении в воде:
Многие соли – вещества с ионной связью, состоят из положительных и отрицательных ионов, связанных за счет притягивания противоположных зарядов. При растворении в воде происходит гидратация ионов – взаимодействие ионов с полярными молекулами воды. Это уменьшает притяжение между ионами соли и делает возможным переход гидратированных, т.е. связанных с молекулами воды, ионов в раствор (этому способствует тепловое движение частиц).
При выпаривании соли из раствора часть воды может оставаться в составе получаемых кристаллов – кристаллизационная вода. Например, сульфат меди (II) при выпаривании из раствора образует медный купорос (синего цвета), содержащий 5 моль воды на 1 моль соли. Формула медного купороса записывается как CuSO4•5H2O – точка обозначает связь между молекулами воды и ионами в составе сульфата меди(II).
При длительном нагревании медного купороса кристаллизационная вода улетучивается и соль приобретает белый цвет. Синий цвет растворов, содержащих ионы меди (II), свидетельствует о том, что в растворе находятся гидратированные ионы.
У оснований механизм диссоциации такой же, как и у солей. Растворимые основания – щелочи, – диссоциируют с образованием катиона металла и гидроксид-ионов:
NaOH = Na+ + OH–
Кислоты содержат ковалентные полярные связи. Так, молекула хлороводорода поляризована:
Hδ+Clδ-
(δ+ и δ- означают частичные заряды, меньше единицы). При растворении в воде в результате гидратации поляризация молекулы усиливается и происходит разрыв связи между водородом и кислотным остатком с образованием положительного иона водорода и отрицательного иона кислотного остатка.
Ионом водорода называют именно гидратированный протон и обозначают H3O+, но для простоты записывают H+
Согласно экспериментальным данным, в растворах не обнаружены частицы H3O+. Анализ показывает наличие катионов, включающих две молекулы воды: H5O2+
Основатель теории диссоциации электролитов в растворах – шведский ученый Сванте Аррениус. Гидратная теория растворов разработана Д.И.Менделеевым
При расплавлении электролитов разрыв связей с образованием ионов происходит за счет увеличения энергии частиц при нагревании.