Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FIZIKA_ShPOR_K_EKZAMYeNU_ya_lyublyu_kaps.doc
Скачиваний:
26
Добавлен:
16.04.2019
Размер:
576.51 Кб
Скачать

3.4 Влияние немонохроматичности и размера источника на видимость интерференционной картины.

Как и увеличение размеров источников, немонохроматичность света ведет сначала к ухудшению контрастности (видимости) интерференционных полос, а затем к полному исчезновению их.

3.5 Интерференция в тонких пленках. Полосы равной толщины и равного наклона. Кольца Ньютона.

Получить устойчивую интерференционную картину для света от двух разделённых в пространстве и независящих друг от друга источников света не так легко, как для источников волн на воде Сравнительно просто такую картину можно получить, сделав так, чтобы интерферировали волны одного и того же цуга. Так, интерференция возникает при разделении первоначального луча света на два луча при его прохождении через тонкую плёнку, например плёнку, наносимую на поверхность линз упросветлённых объективов. Луч света, проходя через плёнку толщиной  , отразится дважды — от внутренней и наружной её поверхностей. Отражённые лучи будут иметь постоянную разность фаз, равную удвоенной толщине плёнки, от чего лучи становятся когерентными и будут интерферировать. Полное гашение лучей произойдет при  , где λ —длина волны. Если λ = 550 нм, то толщина плёнки равняется 550:4=137,5 нм.

Лучи соседних участков спектра по обе стороны от λ = 550 нм интерферируют не полностью и только ослабляются, отчего плёнка приобретает окраску. В приближении геометрической оптики, когда есть смысл говорить об оптической разности хода лучей, для двух лучей

 — условие максимума;

 — условие минимума,

где k=0,1,2... и L1,2 — оптическая длина пути первого и второго луча, соответственно. При этом надо учитывать, что при отражении от поверхности оптически более плотной среды фаза отраженного луча скачкообразно меняется на π, другими словами, теряется половина длины волны, а при отражении от поверхности оптически менее плотной среды фаза не меняется[2]. Так, у оранжевого и жёлтого лучей на рисунке оптическая разность хода[3]:

где   — длина волны падающего луча.

Полосы равной толщины возникают при отражении параллельного пучка лучей от поверхности тонкой пленки, толщина которой неодинакова и меняется по какому-либо закону. Оптическая разность хода интерферирующих лучей будет меняться при переходе от одних точек поверхности пленки к другим из-за изменения толщины пленки. Интенсивность света будет одинакова в тех точках, где одинакова толщина пленки. Полосы равной толщины локализованы вблизи поверхности пленки.

4.1 Дифракция света. Дифракция Френеля и Дифракция Фраунгофера.

Дифракция света, явления, наблюдающиеся при распространении света мимо резких краёв непрозрачных или прозрачных тел, сквозь узкие отверстия. При этом происходит нарушение прямолинейности распространения света, т. е. отклонение от законов геометрической оптики.

Дифракция Френеля. На рисунке изображён непрозрачный экран с круглым отверстием, на некотором расстоянии от которого расположен источник света. Изображение фиксируется на другом экране справа. Вследствие дифракции свет, проходящий через отверстие, расходится. Поэтому область, которая была затенена по законам геометрической оптики, будет частично освещённой. В области, которая при прямолинейном распространении света была бы освещённой, наблюдаются колебания интенсивности освещения в виде концентрических колец.

Дифракция Фраунгофера. Случай дифракции, при котором дифракционная картина наблюдается на значительном расстоянии от отверстия или преграды. Иными словами, дифракция Фраунгофера наблюдается тогда, когда число зон Френеля  , при этом приходящие в точку волны являются практически плоскими. При наблюдении данного вида дифракции изображение объекта не искажается и меняет только размер и положение в пространстве. В противоположность этому, при дифракции Френеля изображение меняет также свою форму и существенно искажается.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]