
- •Предисловие
- •Введение
- •1. Системный анализ задачи - выделяются процессы и функции, реализация которых будет возложена на мк или ип.
- •Алгоритмизация процессов и функций - разрабатываются алгоритмы решения задачи.
- •Области использования мк
- •Глава 1основы микропроцессорной техники
- •1.1. Классификация микропроцессоров, основные варианты их архитектуры и структуры
- •1.2. Общая структура и принципы функционирования микропроцессорных систем
- •1.3. Система команд и способы адресации операндов
- •Начиная с младшего байта («Little-Endian»);
- •Начиная со старшего байта («Big-Endian»).
- •1.4. Интерфейсы микропроцессорных систем
- •1.4.1. Основные понятия
- •1.4.2. Магистраль vme
- •Verbs находит широкое применение в:
- •VmEbus обеспечивает наилучшее соотношение цена - производительность для системы в целом и предоставляет практически неограниченные возможности наращивания всех ресурсов.
- •1.5. Шина usb
- •На их основе
- •2.1. Структура и функционирование процессоров intel p6
- •2.1.1. Суперскалярная архитектура и организация конвейера команд
- •2.1.2. Режимы работы процессора и организация памяти
- •2.1.3. Регистровая модель
- •1. Функциональные основные регистры:
- •Iopl -уровень привилегий ввода/вывода, задает максимальную величину уровня привилегий текущей программы, при котором разрешается выполнение команд ввода/вывода;
- •2.3 Режимы работы процессора
- •2.1.4. Внутренняя кэш-память
- •8 Зон по 64 Кбайт, занимающих диапазон адресов 0-7fffFh (512 Кбайт);
- •16 Зон по 16 Кбайт, занимающих диапазон адресов 80000h-8ffffh (256 Кбайт);
- •8 Зон размером от 4 Кбайт до максимального размера физической памяти, которые могут размещаться в любой позиции адресного пространства.
- •2.1.5. Форматы команд и способы адресации
- •Содержимого базового регистра евр (вр) или евх (вх);
- •Содержимого индексного регистра esi (si) или edi (di);
- •Disp команды (см. Рис. 2.11).
- •2.2. Система команд: операции над целыми числами
- •Пересылка данных и адресов
- •Xchg - Обмен между регистрами или памятью и регистром
- •Xlat-Преобразование кодов
- •Imul-Знаковое (целочисленное) умножение аам- ascii-коррекция результата умножения
- •Idiv-Знаковое (целочисленное) деление
- •2.2.1. Команды пересылки
- •2.2.2. Команды арифметических операций
- •2.2.3. Команды логических операций и сдвигов
- •2.2.4. Команды битовых и байтовых операций
- •2.2.5. Команды операций со строками символов
- •2.3. Система команд: операции управления
- •Управление программой
- •Прерывания
- •Int3 - Прерывание в контрольной точке
- •Iret-Возврат из подпрограммы обслуживания прерывания
- •2.3.1. Команды управления программой
- •2.3.3. Команды организации защиты памяти
- •2.3.4. Команды управления процессором
- •2.3.5. Префиксные байты
- •2.4. Система команд: операции над числами с плавающей точкой
- •2.4.3. Команды пересылки данных
- •2.4.4. Команды арифметических операций
- •2.4.6. Команды специальных операций
- •2.4.7. Команды управления fpu
- •Команды преобразования
- •Арифметические команды
- •Inub'- Нахождение меньшего значения (беззнаковые байты) Команды сравнения
- •Команды логических операций
- •2.5.1. Форматы представления данных и выполнение операций
- •2.5.2. Команды пересылки и преобразования данных
- •1 2.5.3. Команды арифметических операций '
- •2.5.4. Команды логических операций и сдвигов
- •2.5.5. Команды сравнения и нахождения максимума/минимума
- •2.6. Система команд: операции sse
- •Команды пересылки данных
- •Команды преобразования данных
- •Арифметические команды
- •Команды нахождения максимума и минимума.
- •Команды преобразования формата чисел.
- •Команды управления
- •2.6.1. Форматы представления данных и выполнение операций
- •2.6.2. Команды пересылки и преобразования данных
- •2.6.3. Команды арифметических операций
- •2.6.6. Команды преобразования формата чисел
- •2.6.7. Команды управления
- •2.6.8. Команды пересылки данных с управлением кэшированием
- •2.7. Работа процессора в защищенном и реальном режимах
- •2.7.1. Сегментация памяти в защищенном режиме
- •2.7.2. Страничная организация памяти
- •2.7.3. Защита памяти
- •2.7.4. Поддержка многозадачного режима
- •2.7.5. Реализация режима виртуального 8086 (v86)
- •2.7.6. Функционирование процессора в реальном режиме
- •2.8. Реализация прерываний и исключений. Обеспечение тестирования и отладки
- •2.8.1. Виды прерываний и исключений, реализация их обслуживания
- •2.8.2. Причины возникновения исключений
- •2.8.3. Средства обеспечения отладки
- •2.8.4. Реализация тестирования и контроля функционирования
- •2.9. Risc-микропроцессоры и risc-микроконтроллеры семейств powerpc (мрс60х, мрс50х)
- •2.9.1. Risc-микропроцессоры семейства мрс60х (powerpc)
- •I (invalid) - недостоверное (аннулированное) содержимое строки.
- •2.9.2. Risc-микроконтроллеры семейства мрс5хх ( power pc)
- •3.1. Общие принципы организации кэш-памяти
- •3.1.1. Понятия тега, индекса и блока
- •3.1.2. Механизм кэш-памяти с прямым отображением данных
- •3.1.3. Механизм кэш-памяти
- •3.1.4. Обновление информации в кэш-памяти
- •1.5. Согласованность кэш-памяти
- •3.2.2. Внутренние кэш-памяти команд и данных
- •3.2.3. Алгоритм кэш-замещений
- •3.2 4. Состояния кэш-памяти данных
- •1.При блокированном чтении:
- •3.2.5. Согласованность внутренних кэш-памятей
- •1) Хранить таблицы страниц и директорий в не копируемой в кэш-память области основной памяти или использовать режим сквозной записи страниц;
- •Процессор может быть заменен (возможен upgraded) без изменения памяти и других подсистем мп вс;
- •Без особого снижения общих характеристик системы могут быть использованы более медленные и менее емкие устройства памяти и устройства ввода/вывода.
- •3.3. Функционирование памяти
- •1) Трансляция сегмента, при которой логический адрес, состоящий из селектора сегмента и смещения (относительного адреса внутри сегмента), преобразуется в линейный адрес.
- •3.3.1. Трансляция сегментов
- •Глобальной таблице дескрипторов (gdt);
- •Локальной таблице дескрипторов (ldt).
- •3.3.2. Адресация физической памяти
- •3.3.4. Комбинирование сегментной и страничной трансляции
- •3.4. Защита памяти
- •3.4.1. Зачем нужна защита?
- •Устанавливает различие между разными форматами дескрипторов;
- •Специфицирует функциональное назначение сегмента.
- •1 Поле предела называют также полем границы.
- •2 Байты сегмента размещены в оп в порядке возрастания адресов памяти или в обратном порядке. Такое размещение также называют соответственно по принципу «младший» и «старший крайний».
- •Cpl (текущий уровень привилегий);
- •Rpl (уровень привилегий источника обращений к сегменту) из селектора, используемый для спецификации сегмента назначения;
- •3)Dpl дескриптора сегмента назначения.
- •Загрузить регистр сегмента данных селектором несогласованного, с разрешением чтения кодового сегмента;
- •Загрузить регистр сегмента данных селектором кодового сегмента, который является согласованным и разрешенным для чтения;
- •Использовать префикс переопределения cs, чтобы прочитать разрешенный для чтения кодовый сегмент, селектор которого уже загружен в cs регистр.
- •Для команды call (или для команды jmp для согласованного сегмента) должны быть выполнены следующие правила привилегий:
- •Привилегированные команды, которые нужны для систем управления вычислительным процессом;
- •Чувствительные команды (Sensitive Instructions), которые используются для ввода/вы вода и для действий, связанных с вводом/выводом.
- •1) Проверка того, имеет ли назначение, специфицированное указателем право доступа к
- •Проверка того, соответствует ли тип сегмента заданному использованию;
- •Проверка указателя на соответствие границе сегмента.
- •Verw (Verify for Writing) - проверка доступности по записи обеспечивает те же самые возможности, что и verr для проверки доступности по чтению.
- •3.4.4. Уровень защиты страниц
- •1) Ограничение адресуемой области; 2) проверка типа страницы.
- •3.4.5. Комбинирование защиты сегментов и страниц
- •Глава 4
- •4.1. Структура современных 8-разрядных микроконтроллеров
- •4.1.1. Модульный принцип построения
- •Tiny avr - mk в 8-выводном корпусе низкой стоимости;
- •Classic avr - основная линия мк с производительностью до 16 mips, Flash память программ объемом до 8 Кбайт и статическим озу данных 128. ..512 байт;
- •Mega avr - мк для сложных приложений, требующих большого объема памяти (Flash пзу до 128 Кбайт), озу до 4 Кбайт, производительностью до 6 mips.
- •4.1.4. Резидентная память мк
- •4.1.5. Порты ввода/вывода
- •Однонаправленные порты, предназначенные в соответствие со спецификацией мк только для ввода или только для вывода информации.
- •Двунаправленные порты, направление передачи которых (ввод или вывод) определяется в процессе инициализации системы.
- •4.1.6. Таймеры и процессоры событий
- •Импульсную последовательность с выхода управляемого делителя частоты fBijs;
- •Внешнюю импульсную последовательность, поступающую на один из входов мк.
- •Простое увеличение числа модулей таймеров; этот путь характерен для части мк компаний «Pfilips» и «Atmel» со структурой msc-51, для мк компаний «Mitsubishi» и «Hitachi».
- •Изменение логического уровня с 0 на 1 (нарастающий фронт сигнала);
- •Изменение логического уровня с 1 на 0 (падающий фронт сигнала);
- •Любое изменение логического уровня сигнала.
Устанавливает различие между разными форматами дескрипторов;
Специфицирует функциональное назначение сегмента.
Кроме дескрипторов сегментов данных и кодовых сегментов, обычно используемых прикладными программами, есть еще дескрипторы специальных сегментов, используемые операционной системой и дескрипторы вентилей (шлюзов). Табл. 3.4 содержит все значения поля «тип» для системных сегментов и вентилей. |
Рис. 3.24. Поля защиты дескриптора сегментов (А - бит обращения; AVL - бит, доступный для использования программистом; В - «большой» бит; С - бит согласования; D - разряд по умолчанию; DPL - уровень привилегий дескриптора; Е - бит прямой и обратной записи; G - бит дробности; Р - бит присутствия; R - бит доступности для чтения; W - бит доступности для записи)
Заметим, что не все дескрипторы описывают сегменты; дескрипторы вентилей вызова имеют другую цель.
Поля типа дескрипторов сегментов данных и кодовых сегментов включают разряды, которые в дальнейшем определяют степень защиты сегмента (см. рис. 3.24.).
Разряд разрешения записи (W) в дескрипторе сегмента данных указывает, могут ли команды осуществлять запись в этот сегмент.
Разряд разрешения чтения (R) в дескрипторе кодового' сегмента указывает, разрешено ли командам читать из сегмента (например, для доступа к константам, которые хранятся в командах). Кодовый сегмент, разрешенный для чтения, может быть прочитан двумя способами:
через регистр CS, путем использования префикса переопределения CS;
путем загрузки селектора дескриптора кодового сегмента в регистр сегментов данных (DS, ES, FS или GS).
Проверка типа может быть использована для обнаружения ошибок программы, при которых делается попытка использовать сегменты так, как это не предусмотрено программистом. Процессор проверяет информацию типа по двум алгоритмам:
1) когда селектор дескриптора загружается в сегментный регистр; определенные сегментные регистры могут содержать только определенные типы дескрипторов, например: CS-регистр может загружаться только селектором кодового сегмента; селекторы кодовых сегментов, для которых не разрешено чтение, не могут быть загружены в регистры сегментов данных; только селекторы сегментов данных с разрешением записи в сегмент могут быть загружены в регистр SS;
2) когда команда содержит обращение (неявное или явное) к сегментному регистру; определенные сегменты могут быть использованы командами лишь в определенных, наперед заданных случаях, например: никакая команда не может записывать информацию в кодовый сегмент; никакая команда не может записывать информацию в сегмент данных, если разряд разрешения записи не установлен; никакая команда не может прочитать кодовый сегмент, если не установлен разряд разрешения чтения.
Проверка предела1 (границы). Поле границы дескриптора сегмента используется процессором для того, чтобы предотвратить адресацию за пределы сегмента.
Процессор по-разному интерпретирует границу в зависимости от состояния разряда дробности (G), а для сегментов данных процессор по-разному интерпретирует границу в зависимости также от состояния разряда Е (разряд прямой или обратной записи) и разряда В («большого»2 разряда — см. табл. 3.5).
Когда G = 0, истинная граница имеет значение поля 20-разрядной границы, которая указана в дескрипторе. В этом случае граница может простираться от 0 до OFFFFFH (220- 1 ИЛИ 1 МбайТ).
Таблица 3.5