Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ekzamen_KSYe.doc
Скачиваний:
15
Добавлен:
15.04.2019
Размер:
350.21 Кб
Скачать
  1. синтез кристаллов с максимальным приближением к идеальной решетке для получения материалов с высокими техническими показателями: максимальной прочностью, термической стойкостью, долговечностью в эксплуатации и др.;

  2. Создание кристаллов с заранее запрограммированными дефектами кристаллической решетки для производства материалов с заданными электрическими, магнитными и другими свойствами.

5) Развитие учения о химических процессах. Методы управления химическими процессами.

Под влиянием новых требований производства возникло учение о химических процессах, в котором учитывается изменение свойств вещества под влиянием температуры, давления, растворителей и других факторов. После этого химия становится наукой уже не только и не столько о веществах как законченных предметах, но и наукой о процессах и механизмах изменения вещества. Благодаря этому она обеспечила создание производства синтетических материалов, заменяющих дерево и металл в строительных работах, пищевое сырье в производстве олифы, лаков, моющих средств и смазочных материалов. Производство искусственных волокон, каучуков, этилового спирта и многих растворителей стало базироваться на нефтяном сырье, а производство азотных удобрений — на основе азота воздуха. Появилась технология нефтехимических производств с ее поточными системами, обеспечивающими непрерывные высокопроизводительные процессы.

Так, еще в 1935 г. такие материалы, как кожа, меха, резина, волокна, моющие средства, олифа, лаки, уксусная кислота, этиловый спирт, производились всецело из животного и растительного сырья, в том числе из пищевого. На это расходовались десятки миллионов тонн зерна, картофеля, жиров, сырой кожи и т.д. Но уже в 1960-е гг. 100% технического спирта, 80% моющих средств, 90% олифы и лаков, 40% волокон, 70% каучука и около 25% кожевенных материалов они изготовлялись на основе газового и нефтяного сырья.

Столь впечатляющие успехи были достигнуты на основе учения о химических процессах. Одним из основоположников этого научного направления стал русский химик Н.Н. Семенов

Учение о химических процессах базируется на идее, что способность к взаимодействию различных химических реагентов определяется кроме всего прочего и условиями протекания химических реакций. Эти условия могут оказывать воздействие на характер и результаты химических реакций.

Подавляющее большинство химических реакций находится во власти стихии. Конечно, есть реакции, которые не требуют особых средств управления или особых условий. Таковы всем известные реакции кислотно-основного взаимодействия (нейтрализации). Однако подавляющее большинство реакций являются трудноконтролируемыми. Есть реакции, которые просто не удается осуществить,

хотя они в принципе осуществимы. Существуют реакции, которые трудно остановить: горения и взрывы. И, наконец, встречаются реакции, которые трудно ввести в одно желательное русло, так как они самопроизвольно создают десятки непредвиденных ответвлений с образованием сотен побочных продуктов. Поэтому важнейшей задачей для химиков становится умение управлять химическими процессами, добиваясь нужных результатов.

В самом общем виде методы управления химическими процессами можно подразделить на термодинамические и кинетические. Термодинамические методы влияют на смещение химического равновесия реакции. Кинетические методы влияют на скорость протекания химической реакции.

Выделение химической термодинамики в самостоятельное направление обычно связывают с появлением в 1884 г. книги голландского химика Я. Вант-Гоффа «Очерки по химической динамике». В ней обоснованы законы, устанавливающие зависимость направления химической реакции от изменения температуры и теплового эффекта реакции. Химические реакции, протекающие с выделением энергии, называются экзотермическими реакциями. В них энергия высвобождается одновременно с уменьшением внутренней энергии системы. Существуют также эндотермические реакции, протекающие с поглощением энергии. В этих реакциях идет повышение внутренней энергии системы за счет притока тепла.

Тогда же французский химик А. Ле-Шателье сформулировал свой знаменитый принцип подвижного равновесия, вооружив химиков методами смещения равновесия в сторону образования целевых продуктов. Эти методы управления и получили название термодинамических методов.

Термодинамические методы преимущественно влияют на направление химических процессов, а не на их скорость. Управлением скоростью химических процессов занимается химическая кинетика, в которой изучается зависимость протекания химических процессов от различных структурно-кинетических факторов — строения исходных реагентов, их концентрации, наличия в реакторе катализаторов и других добавок, способов смешения реагентов, материала и конструкции реактора и т.п.

Задача исследования химических реакций является очень сложной. Ведь при ее решении необходимо выяснить механизм взаимодействия не просто двух реагентов, а еще и «третьих тел», которых может быть несколько.

Кроме того, следует понять, что практически все химические реакции представляют собой отнюдь не простое взаимодействие исходных реагентов, а сложные цепи последовательных стадий, где реагенты взаимодействуют не только друг с другом, но и со стенками реактора, могущими как катализировать (ускорять), так и ингибировать (замедлять) процесс.

В современных условиях одно из важнейших направлений развития учения о химических процессах — создание методов управления этими процессами, поэтому химическая наука занимается разработкой таких проблем, как химия плазмы, радиационная химия, химия высоких давлений и температур.

Химия плазмы изучает химические процессы в низкотемпературной плазме при температурах от 1000 до 10 000°С. Плазмохимические процессы очень производительны.

Плазменная химия в последнее время все больше внедряется в промышленное производство. Уже созданы технологии производства сырья для порошковой металлургии, разработаны методы синтеза для целого ряда химических соединений. В 1970-е гг. были созданы плазменные сталеплавильные печи, позволяющие получать самые высококачественные металлы. Разработаны методы ионно-плазменной обработки поверхности инструментов, износостойкость которых увеличивается в несколько раз.

Плазмохимия позволяет синтезировать ранее неизвестные материалы, такие, как металлобетон, в котором в качестве связующего элемента используются различные металлы. Металлобетон образуется при сплавлении частиц горной породы и прочном сжатии их с металлом. По своим качествам он превосходит обычный бетон в десятки и сотни раз.

Одним из самых молодых направлений в исследовании химических процессов является радиационная химия, которая зародилась во второй половине XX в. Предметом ее разработок стали превращения самых разнообразных веществ под воздействием ионизирующих излучений. Источниками ионизирующего излучения служат рентгеновские установки, ускорители заряженных частиц, ядерные реакторы, радиоактивные изотопы. В результате радиационно-химических реакций вещества получают повышенную термостойкость и твердость.

Наиболее важными процессами радиационно-химической технологии являются полимеризация, вулканизация, производство композиционных материалов, в том числе получение полимербетонов путем пропитки обычного бетона каким-либо полимером с его последующим облучением. Такие бетоны имеют в четыре раза более высокую прочность, обладают водонепроницаемостью и высокой коррозионной стойкостью.

Еще одна область развития учения о химических процессах — химия высоких и сверхвысоких давлений.

При высоком давлении сближаются и деформируются электронные оболочки атомов, что ведет к повышению реакционной способности веществ. При давлении 102—103 атм исчезает различие между жидкой и газовой фазами, а при 103—105 атм — между твердой и жидкой фазами. При высоком давлении сильно меняются физические и химические свойства веществ. Например, при давлении 20 000 атм металл становится эластичным, как каучук. Обычная вода при высоких температуре и давлении становится химически активной. С повышением давления многие вещества переходят в металлическое состояние. Так, в 1973 г. ученые наблюдали металлический водород при давлении 2,8 млн. атм.

Одним из важнейших достижений химии сверхвысоких давлений стал синтез алмазов. Он идет при давлении 50 000 атм и температуре 2000°С. При этом графит кристаллизуется в алмазы. В последнее время ежегодно производятся тонны синтетических алмазов, которые лишь незначительно отличаются от природных по своим свойствам. Получающиеся алмазы используются для промышленных целей — в режущем и буровом оборудовании. Удалось синтезировать черные алмазы — карбонадо, которые тверже природных алмазов. Они используются для обработки самих алмазов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]