
- •1 Основные кинематические величины
- •2 Движение по окружности
- •3 Криволинейное движение
- •4 Законы Ньютона
- •Первый закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Второй закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Третий закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Комментарии к законам Ньютона Сила инерции
- •Законы Ньютона и Лагранжева механика
- •Решение уравнений движения
- •5 Принцип независимости действия сил
- •Момент импульса в классической механике
- •Определение
- •Вычисление момента
- •8 Центр масс
- •Определение
- •Центры масс однородных фигур
- •В механике
- •Центр масс в релятивистской механике
- •Центр тяжести
- •9 Степени свободы (механика)
- •Примеры
- •Движение и размерности
- •Системы тел
- •Определение степеней свободы механизмов
- •10 Момент силы
- •Общие сведения
- •Предыстория
- •Единицы
- •Специальные случаи Формула момента рычага
- •Определение
- •Вычисление момента
- •Сохранение углового момента
- •11 Динамика твердого тела
- •***Можно не читать!***Динамика твердого тела
- •12 Момент инерции
- •Теорема Гюйгенса-Штейнера
- •Осевые моменты инерции некоторых тел
- •Центральный момент инерции
- •13 Теорема Штейнера
- •Работа силы
- •15 Работа - потенциальная сила
- •Работа силы (сил) над одной точкой
- •Работа силы (сил) над системой или неточечным телом
- •Кинетическая энергия
- •История
- •Физический смысл
- •Физический смысл работы
- •Релятивизм
- •Соотношение кинетической и внутренней энергии
- •Потенциальная энергия
- •О физическом смысле понятия потенциальной энергии
- •Физическая абстракция
- •Абсолютно упругий удар
- •Абсолютно неупругий удар
- •Реальный удар
- •Гидростатическое давление
- •Дифференциальное уравнение Бернулли
- •Сила вязкого трения
- •Вторая вязкость
- •Вязкость жидкостей Динамический коэффициент вязкости
- •Кинематическая вязкость
- •Ньютоновские и неньютоновские жидкости
- •Относительная вязкость
- •Ламинарный и турбулентный режим течения жидкости
- •Вязкость. Ламинарные и турбулентные режимы течения
- •Траектория материальной точки
- •Описание траектории
- •Связь со скоростью и нормальным ускорением
- •Связь с уравнениями динамики
- •Траектория свободной материальной точки
- •Движение под действием внешних сил в инерциальной системе отсчёта
- •Движение под действием внешних сил в неинерциальной системе отсчёта
- •Сила инерции
- •Терминология
- •Реальные и фиктивные силы
- •Эйлеровы силы инерции
- •Ньютоновы силы инерции
- •Д’Аламберовы силы инерции
- •Сила инерции на поверхности Земли
- •Силы Второй закон Ньютона
- •Третий закон Ньютона
- •Движение в инерциальной со
- •Движение в неинерциальной со
- •Общий подход к нахождению сил инерции
- •Движение тела по произвольной траектории в неинерциальной со
- •Работа фиктивных сил инерции
- •Существование инерциальных систем отсчёта
- •Эквивалентность сил инерции и гравитации
- •Принцип относительности
- •История
- •Специальная теория относительности
- •Создание сто
- •Основные понятия и постулаты сто
- •Основные понятия
- •Синхронизация времени
- •Линейность преобразований
- •Согласование единиц измерения
- •Изотропность пространства
- •Принцип относительности
- •Постулат постоянства скорости света
- •***Более простой вариант*** Постулаты Специальной Теории Относительности (сто)
- •Преобразования Лоренца
- •Преобразования Лоренца в физике
- •Вид преобразований при коллинеарных (параллельных) пространственных осях
- •Вывод преобразований
- •Разные формы записи преобразований Вид преобразований при произвольной ориентации осей
- •Преобразования Лоренца в матричном виде
- •Свойства преобразований Лоренца
- •Следствия преобразований Лоренца Изменение длины
- •Относительность одновременности
- •Замедление времени для движущихся тел Связанные определения
- •История
9 Степени свободы (механика)
В механике, степени свободы — это совокупность независимых координат перемещения и/или вращения, полностью определяющая движение и/или положение тела или системы тел. Это фундаментальное понятие применяется в теоретической механике, теории механизмов и машин, машиностроении, авиационной промышленности, робототехнике и других областях.
Примеры
Этот механизм Чебышева имеет только одну степень свободы, так как его положение полностью определяется углом поворота любого из трёх подвижных звеньев — либо L2, либо L3, либо L4.
Твёрдое тело, движущееся в трёхмерном пространстве, максимально может иметь шесть степеней свободы: три поступательных и три вращательных.
Автомобиль, если его рассматривать как твёрдое тело, перемещается по плоскости, а точнее говоря, по некоторой двумерной поверхности (в двумерном пространстве). Он имеет три степени свободы (одну вращательную, и две поступательные).
Поезд вынужден перемещаться по рельсовому пути, и поэтому он имеет только одну степень свободы.
Движение и размерности
В общем случае твёрдое тело в d измерениях имеет d(d + 1)/2 степеней свободы (d поступательных и d(d −1)/2 вращательных).
Упругие или деформируемые тела можно рассматривать как систему множества мельчайших частиц (бесконечное число степеней свободы; в этом случае систему часто приближённо рассматривают как имеющую ограниченное число степеней свободы.
Если основным объектом анализа является движение, вызывающее большие перемещения (например, движение спутников), то для упрощения расчётов деформируемое тело приближённо рассматривают как абсолютно твёрдое.
Системы тел
Система из нескольких тел может иметь в целом такое количество степеней свободы, которое является суммой степеней свободы составляющих систему тел, за вычетом тех степеней свободы, которые ограничиваются внутренними связями. Механизм, содержащий несколько соединённых тел, может иметь количество степеней свободы большее, чем имеет одно свободное твёрдое тело. В этом случае термин «степени свободы» используется для обозначения количества параметров, необходимых для точного определения положения механизма в пространстве.
Специфическим типом механизма является открытая кинематическая цепь, в которой жёсткие звенья имеют подвижные соединения, способные обеспечить одну степень свободы (если это петлевой шарнир или скользящее соединение), или две степени свободы (если это цилиндрическое соединение). Подобные цепи используются в основном в робототехнике, биомеханике и для космических механизмов.
Рука человека имеет 7 степеней свободы.
Робот, имеющий механизм, способный контролировать все 6 физических степеней свободы, называют голономным. Если робот имеет меньшее количество контролируемых степеней свободы, то его называют неголономным. Робот или другой объект с количеством контролируемых степеней свободы бо́льшим, чем количество физических степеней свободы, называют избыточным.
Определение степеней свободы механизмов
Определение количества степеней свободы плоских механизмов: m — количество степеней свободы; n — количество звеньев механизма (включая одно неподвижное звено); f — количество подвижных соединений звеньев
Большинство обычных механизмов имеют одну степень свободы, то есть, имеется одно входное движение, определяющее одно выходное движение. Кроме того, большинство механизмов являются плоскими. Пространственные механизмы более сложны для расчётов.
Для расчётов степеней свободы механизмов применяется формула Чебышева — Граблера — Кутцбаха (англ.).
В наиболее простом виде для плоских механизмов эта формула имеет вид:
,
где
—
количество степеней свободы;
—
количество звеньев механизма (включая
одно неподвижное звено — основание);
—
количество кинематических
пар с одной степенью свободы
(петлевое
или скользящее
соединение);
В более общем виде формула Чебышева — Граблера — Кутцбаха для плоских механизмов, содержащих более сложные соединения звеньев:
,
где
Или для пространственного механизма (механизма, имеющего трёхмерное движение):
— количество степеней свободы;
— количество звеньев механизма (включая одно неподвижное звено — основание);
—
общее количество подвижных соединений
звеньев, не рассматривая количество
степеней свободы этих соединений;
—
сумма всех степеней свободы всех
подвижных соединений (шарниров).
Число степеней свободы - это число независимых величин, которые необходимо задать для того, чтобы однозначно определить положение тела в пространстве. В разных ситуациях число степеней свободы твердого тела может быть различным.Твердое тело имеет шесть степеней свободы, как бы ни было велико число N образующих его точек.