Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика ЭКЗАМЕН.docx
Скачиваний:
32
Добавлен:
15.04.2019
Размер:
1.33 Mб
Скачать

Общий подход к нахождению сил инерции

Сравнивая движение тела в инерциальной и неинерциальной СО можно прийти к следующему выводу:

Пусть есть сумма всех сил, действующих на тело в неподвижной (первой) системе координат, которая вызывает его ускорение . Эта сумма находится путём измерения ускорения тела в этой системе, если известна его масса

Аналогично есть сумма сил, измеренная в неинерциальной системе координат, вызывающая ускорение , в общем случае отличающееся от вследствие её ускоренного движения.

Тогда сила инерции в неинерциальной системе координат будет определяться разницей:

=  — (19)

или:

= m (  — ) (20)

В частности, если тело покоится в неинерциальной системе, то есть = 0, то

= — (21).

Если в выражении (20) считать, что ускорение измерено не в абсолютной, но в другой неинерциальной системе координат, то найденная сила инерции будет представлять собой силу, соответствующую относительному движению двух неинерциальных СО. Если учесть, что все тела во Вселенной взаимодействуют друг с другом в силу всепроникающей гравитации, и потому инерциальных СО в принципе не существует, то именно этот случай является действительно реализуемым на практике.

Движение тела по произвольной траектории в неинерциальной со

Положение материального тела в условно неподвижной и инерциальной системе задаётся здесь вектором , а в неинерциальной системе — вектором . Расстояние между началами координат определяется вектором . Угловая скорость вращения системы задаётся вектором , направление которого устанавливается по оси вращения по правилу правого винта. Линейная скорость тела по отношению к вращающейся СО задаётся вектором .

В данном случае инерционное ускорение в соответствии с (11) будет равно сумме:

= (22)[4]

Здесь первый член — переносное ускорение второй системы относительно первой.

Второй член — ускорение, возникающее из-за неравномерности вращения системы вокруг своей оси.

Третий член есть Кориолисово ускорение, вызванное той составляющей вектора скорости, которая не параллельна оси вращения неинерциальной системы.

Последний член, взятый без знака, представляет собой вектор, направленный в противоположную сторону от вектора , что можно получить, раскрывая двойное векторное произведение, когда получаем, что этот член равен ( ) и потому представляет собой центростремительное ускорение тела в системе отсчёта неподвижного наблюдателя, принимамой за ИСО, в которой сил инерции быть не может по определению.

Однако формула (22) относится к ускорениям, наблюдаемым в неинерциальной (поворачивающей) системе отсчёта и последние три члена в (11) представляют собой относительное ускорение, то есть ускорение, испытываемое телом в неинерциальной системе отсчёта под действием центробежной силы инерции (см. синюю стрелку на рисунке). Последний член должен представлять (вместе со знаком) центробежное ускорение, и потому перед ним должен стоять знак минус.

Работа фиктивных сил инерции

В классической физике силы инерции встречаются в трёх различных ситуациях в зависимости от системы отсчёта, в которой производится наблюдение[12]. Это сила, приложенная к связи при наблюдении в инерциальной СО или к движущемуся телу при наблюдении в неинерциальной системе. Обе эти силы реальны и могут совершать работу. Так, примером работы, совершаемой Кориолисовой силой в планетарном масштабе является эффект Бэра[19]

При решении задач на бумаге, когда искусственно сводят динамическую задачу движения к задаче статики, вводят третий вид сил называемый силами Даламбера, работы не совершающих, поскольку работа и неподвижность тел, несмотря на действие на него сил в физике есть понятия несовместимые.