
- •1 Основные кинематические величины
- •2 Движение по окружности
- •3 Криволинейное движение
- •4 Законы Ньютона
- •Первый закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Второй закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Третий закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Комментарии к законам Ньютона Сила инерции
- •Законы Ньютона и Лагранжева механика
- •Решение уравнений движения
- •5 Принцип независимости действия сил
- •Момент импульса в классической механике
- •Определение
- •Вычисление момента
- •8 Центр масс
- •Определение
- •Центры масс однородных фигур
- •В механике
- •Центр масс в релятивистской механике
- •Центр тяжести
- •9 Степени свободы (механика)
- •Примеры
- •Движение и размерности
- •Системы тел
- •Определение степеней свободы механизмов
- •10 Момент силы
- •Общие сведения
- •Предыстория
- •Единицы
- •Специальные случаи Формула момента рычага
- •Определение
- •Вычисление момента
- •Сохранение углового момента
- •11 Динамика твердого тела
- •***Можно не читать!***Динамика твердого тела
- •12 Момент инерции
- •Теорема Гюйгенса-Штейнера
- •Осевые моменты инерции некоторых тел
- •Центральный момент инерции
- •13 Теорема Штейнера
- •Работа силы
- •15 Работа - потенциальная сила
- •Работа силы (сил) над одной точкой
- •Работа силы (сил) над системой или неточечным телом
- •Кинетическая энергия
- •История
- •Физический смысл
- •Физический смысл работы
- •Релятивизм
- •Соотношение кинетической и внутренней энергии
- •Потенциальная энергия
- •О физическом смысле понятия потенциальной энергии
- •Физическая абстракция
- •Абсолютно упругий удар
- •Абсолютно неупругий удар
- •Реальный удар
- •Гидростатическое давление
- •Дифференциальное уравнение Бернулли
- •Сила вязкого трения
- •Вторая вязкость
- •Вязкость жидкостей Динамический коэффициент вязкости
- •Кинематическая вязкость
- •Ньютоновские и неньютоновские жидкости
- •Относительная вязкость
- •Ламинарный и турбулентный режим течения жидкости
- •Вязкость. Ламинарные и турбулентные режимы течения
- •Траектория материальной точки
- •Описание траектории
- •Связь со скоростью и нормальным ускорением
- •Связь с уравнениями динамики
- •Траектория свободной материальной точки
- •Движение под действием внешних сил в инерциальной системе отсчёта
- •Движение под действием внешних сил в неинерциальной системе отсчёта
- •Сила инерции
- •Терминология
- •Реальные и фиктивные силы
- •Эйлеровы силы инерции
- •Ньютоновы силы инерции
- •Д’Аламберовы силы инерции
- •Сила инерции на поверхности Земли
- •Силы Второй закон Ньютона
- •Третий закон Ньютона
- •Движение в инерциальной со
- •Движение в неинерциальной со
- •Общий подход к нахождению сил инерции
- •Движение тела по произвольной траектории в неинерциальной со
- •Работа фиктивных сил инерции
- •Существование инерциальных систем отсчёта
- •Эквивалентность сил инерции и гравитации
- •Принцип относительности
- •История
- •Специальная теория относительности
- •Создание сто
- •Основные понятия и постулаты сто
- •Основные понятия
- •Синхронизация времени
- •Линейность преобразований
- •Согласование единиц измерения
- •Изотропность пространства
- •Принцип относительности
- •Постулат постоянства скорости света
- •***Более простой вариант*** Постулаты Специальной Теории Относительности (сто)
- •Преобразования Лоренца
- •Преобразования Лоренца в физике
- •Вид преобразований при коллинеарных (параллельных) пространственных осях
- •Вывод преобразований
- •Разные формы записи преобразований Вид преобразований при произвольной ориентации осей
- •Преобразования Лоренца в матричном виде
- •Свойства преобразований Лоренца
- •Следствия преобразований Лоренца Изменение длины
- •Относительность одновременности
- •Замедление времени для движущихся тел Связанные определения
- •История
Вывод преобразований
Преобразования Лоренца могут быть получены абстрактно, из групповых соображений (в этом случае они получаются с неопределённым c), как обобщение преобразований Галилея (что было проделано Пуанкаре — см. ниже). Однако впервые они были получены как преобразования, относительно которых ковариантны уравнения Максвелла (то есть по сути — которые не меняют вида законов электродинамики и оптики при переходе к другой системе отсчёта). Могут также быть получены из предположения линейности преобразований и постулата одинаковости скорости света во всех системах отсчёта (являющегося упрощённой формулировкой требования ковариантности электродинамики относительно искомых преобразований, и распространением принципа равноправия инерциальных систем отсчёта — принципа относительности — на электродинамику), как это делается в специальной теории относительности (СТО) (при этом c в преобразованиях Лоренца получается определённым и совпадает со скоростью света).
Надо заметить, что если не ограничивать класс преобразований координат линейными, то первый закон Ньютона выполняется не только для преобразований Лоренца, а для более широкого класса дробно-линейных преобразований [3] (однако этот более широкий класс преобразований — за исключением, конечно, частного случая преобразований Лоренца — не сохраняет метрику постоянной).
Разные формы записи преобразований Вид преобразований при произвольной ориентации осей
В силу произвольности введения осей координат, многие задачи можно свести к указанному случаю. Если же задача требует иного расположения осей, то можно воспользоваться формулами преобразований в более общем случае. Для этого радиус-вектор точки
,
где
—
орты,
надо разбить на составляющую
параллельную
скорости и составляющую
ей
перпендикулярную
.
Тогда преобразования получат вид
,
где
—
абсолютная
величина скорости,
—
абсолютная величина продольной
составляющей радиус-вектора.
Эти формулы для случая параллельных осей, но с произвольно направленной скоростью, можно преобразовать к виду, впервые полученному Герглоцем:
.
Обратите внимание, что самый общий случай, когда начала координат не совпадают в нулевой момент времени, здесь не приведён с целью экономии места. Его можно получить, добавив к преобразованиям Лоренца трансляцию (смещение начала координат).
Преобразования Лоренца в матричном виде
Для случая коллинеарных осей преобразования Лоренца записываются в виде
,
где
.
При произвольной ориентации осей, в форме 4-векторов это преобразование записывается как:
где
E — единичная матрица 3
3,
—
тензорное
умножение трехмерных векторов.
Надо иметь в виду, что в литературе матрица преобразований Лоренца часто записывается для упрощения в системе единиц, где c = 1.
Произвольное однородное преобразование Лоренца можно представить как некоторую композицию вращений пространства и элементарных преобразований Лоренца, затрагивающих только время и одну из координат. Это следует из алгебраической теоремы о разложении произвольного вращения на простые.
Свойства преобразований Лоренца
Можно заметить, что в случае, когда
, преобразования Лоренца переходят в преобразования Галилея. То же самое происходит в случае, когда
. Это говорит о том, что специальная теория относительности совпадает с механикой Ньютона либо в мире с бесконечной скоростью света, либо при скоростях, малых по сравнению со скоростью света. Последее объясняет, каким образом сочетаются эти две теории — первая является обобщением и уточнением второй, а вторая — предельным случаем первой, оставаясь в этом качестве верной приближенно (с некоторой точностью, на практике часто очень и очень большой) при достаточно малых (по сравнению со скоростью света) скоростях движений.
Преобразования Лоренца сохраняют инвариантным интервал для любой пары событий (точек пространства-времени) — то есть любой пары точек пространства-времени Минковского:
Убедиться в этом нетрудно, например, проверив явно то, что матрица преобразования Лоренца L ортогональна в смысле метрики Минковского
определяемой таким выражением, то есть
. Это проще всего проделать для буста, а для трехмерных вращений это очевидно из определения декартовых координат, кроме того, сдвиги начала отсчёта не меняют разностей координат. Следовательно, это свойство верно и для любых композиций бустов, вращений и сдвигов, что и составляет полную группу Пуанкаре; как только мы узнали, что преобразования координат ортогональны, из этого сразу следует, что формула для расстояния остаётся неизменной при переходе к новой системе координат — по определению ортогональных преобразований.
В частности, инвариантность интервала имеет место и для случая s = 0, а значит — гиперповерхность в пространстве-времени, которая определяется равенством нулю интервала до заданной точки — световой конус — является неподвижной при преобразованиях Лоренца (что является проявлением инвариантности скорости света). Внутреность двух полостей конуса соответствует времениподобным — вещественным — интервалам от их точек до вершины, внешняя область — пространственноподобным — чисто мнимым (в принятой в этой статье сигнатуре интервала).
Другие инвариантные гиперповерхности однородных преобразований Лоренца (аналоги сферы для пространства Минковского) — гиперболоиды: двуполостный гиперболоид для времениподобных интервалов относительно начала координат, и однополостный — для пространственноподобных интервалов.
Матрицу преобразования Лоренца при коллинеарных пространственных осях (в системе единиц c=1) можно представить как:
где
.
В этом легко убедиться, учитывая
и
проверив выполнение соответствующего
тождества для матрицы преобразования
Лоренца в обычном виде.
Если принять введённые Минковским обозначения
, то преобразование Лоренца для такого пространства сводится к повороту на мнимый угол в плоскости, включающей ось
(для случая движения вдоль оси
— в плоскости x0x1). Это очевидно, исходя из подстановки
в матрицу, приведенную чуть выше — и её небольшого изменения для того, чтобы учесть вводимую мнимость временной координаты — и сравнении её с обычной матрицей вращения.