
- •1 Основные кинематические величины
- •2 Движение по окружности
- •3 Криволинейное движение
- •4 Законы Ньютона
- •Первый закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Второй закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Третий закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Комментарии к законам Ньютона Сила инерции
- •Законы Ньютона и Лагранжева механика
- •Решение уравнений движения
- •5 Принцип независимости действия сил
- •Момент импульса в классической механике
- •Определение
- •Вычисление момента
- •8 Центр масс
- •Определение
- •Центры масс однородных фигур
- •В механике
- •Центр масс в релятивистской механике
- •Центр тяжести
- •9 Степени свободы (механика)
- •Примеры
- •Движение и размерности
- •Системы тел
- •Определение степеней свободы механизмов
- •10 Момент силы
- •Общие сведения
- •Предыстория
- •Единицы
- •Специальные случаи Формула момента рычага
- •Определение
- •Вычисление момента
- •Сохранение углового момента
- •11 Динамика твердого тела
- •***Можно не читать!***Динамика твердого тела
- •12 Момент инерции
- •Теорема Гюйгенса-Штейнера
- •Осевые моменты инерции некоторых тел
- •Центральный момент инерции
- •13 Теорема Штейнера
- •Работа силы
- •15 Работа - потенциальная сила
- •Работа силы (сил) над одной точкой
- •Работа силы (сил) над системой или неточечным телом
- •Кинетическая энергия
- •История
- •Физический смысл
- •Физический смысл работы
- •Релятивизм
- •Соотношение кинетической и внутренней энергии
- •Потенциальная энергия
- •О физическом смысле понятия потенциальной энергии
- •Физическая абстракция
- •Абсолютно упругий удар
- •Абсолютно неупругий удар
- •Реальный удар
- •Гидростатическое давление
- •Дифференциальное уравнение Бернулли
- •Сила вязкого трения
- •Вторая вязкость
- •Вязкость жидкостей Динамический коэффициент вязкости
- •Кинематическая вязкость
- •Ньютоновские и неньютоновские жидкости
- •Относительная вязкость
- •Ламинарный и турбулентный режим течения жидкости
- •Вязкость. Ламинарные и турбулентные режимы течения
- •Траектория материальной точки
- •Описание траектории
- •Связь со скоростью и нормальным ускорением
- •Связь с уравнениями динамики
- •Траектория свободной материальной точки
- •Движение под действием внешних сил в инерциальной системе отсчёта
- •Движение под действием внешних сил в неинерциальной системе отсчёта
- •Сила инерции
- •Терминология
- •Реальные и фиктивные силы
- •Эйлеровы силы инерции
- •Ньютоновы силы инерции
- •Д’Аламберовы силы инерции
- •Сила инерции на поверхности Земли
- •Силы Второй закон Ньютона
- •Третий закон Ньютона
- •Движение в инерциальной со
- •Движение в неинерциальной со
- •Общий подход к нахождению сил инерции
- •Движение тела по произвольной траектории в неинерциальной со
- •Работа фиктивных сил инерции
- •Существование инерциальных систем отсчёта
- •Эквивалентность сил инерции и гравитации
- •Принцип относительности
- •История
- •Специальная теория относительности
- •Создание сто
- •Основные понятия и постулаты сто
- •Основные понятия
- •Синхронизация времени
- •Линейность преобразований
- •Согласование единиц измерения
- •Изотропность пространства
- •Принцип относительности
- •Постулат постоянства скорости света
- •***Более простой вариант*** Постулаты Специальной Теории Относительности (сто)
- •Преобразования Лоренца
- •Преобразования Лоренца в физике
- •Вид преобразований при коллинеарных (параллельных) пространственных осях
- •Вывод преобразований
- •Разные формы записи преобразований Вид преобразований при произвольной ориентации осей
- •Преобразования Лоренца в матричном виде
- •Свойства преобразований Лоренца
- •Следствия преобразований Лоренца Изменение длины
- •Относительность одновременности
- •Замедление времени для движущихся тел Связанные определения
- •История
4 Законы Ньютона
Зако́ны Ньюто́на — три закона, лежащие в основе классической механики и позволяющие записать уравнения движения для любой механической системы, если известны силовые взаимодействия для составляющих её тел. Впервые в полной мере сформулированы Исааком Ньютоном в книге «Математические начала натуральной философии» (1687 год).
Первый закон Ньютона
Первый закон Ньютона постулирует наличие такого явления, как инерция тел. Поэтому он также известен как Закон инерции. Инерция — это явление сохранения телом скорости движения (и по величине, и по направлению), когда на тело не действуют никакие силы. Чтобы изменить скорость движения, на тело необходимо подействовать с некоторой силой. Естественно, результат действия одинаковых по величине сил на различные тела будет различным. Таким образом, говорят, что тела обладают инертностью. Инертность — это свойство тел сопротивляться изменению их текущего состояния. Величина инертности характеризуется массой тела.
Современная формулировка
В современной физике первый закон Ньютона принято формулировать в следующем виде
-
Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальная точка при отсутствии внешних воздействий сохраняет величину и направление своей скорости неограниченно долго.
Закон верен также в ситуации, когда внешние воздействия присутствуют, но взаимно компенсируются (это следует из 2-го закона Ньютона, так как скомпенсированные силы сообщают телу нулевое суммарное ускорение).
Историческая формулировка
Ньютон в своей книге «Математические начала натуральной философии» сформулировал первый закон механики в следующем виде:
-
Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.
С современной точки зрения, такая формулировка неудовлетворительна. Во-первых, термин «тело» следует заменить на «материальная точка», так как тело конечных размеров в отсутствие внешних сил может совершать и вращательное движение. Во-вторых, и это главное, Ньютон в своём труде опирался на существование абсолютной неподвижной системы отсчёта, то есть абсолютного пространства и времени, а это представление современная физика отвергает. С другой стороны, в произвольной (скажем, вращающейся) системе отсчёта закон инерции неверен. Поэтому ньютоновская формулировка нуждается в уточнениях.
Второй закон Ньютона
Второй закон Ньютона — дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и получающимся от этого ускорением этой точки. Фактически, второй закон Ньютона вводит массу как меру проявления инертности материальной точки в выбранной инерциальной системе отсчёта (ИСО).
Современная формулировка
-
В инерциальной системе отсчёта ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.
При подходящем выборе единиц измерения, этот закон можно записать в виде формулы:
где
—
ускорение
материальной точки;
—
сила,
приложенная к материальной точке;
m —
масса
материальной точки.
Или в более известном виде:
В случае, когда масса материальной точки меняется со временем, второй закон Ньютона формулируется с использованием понятия импульс:
-
В инерциальной системе отсчета скорость изменения импульса материальной точки равна равнодействующей всех приложенных к ней сил.
где
—
импульс
точки,
где
—
скорость
точки;
t —
время;
—
производная
импульса по времени.
Когда на тело действуют несколько сил, с учётом принципа суперпозиции второй закон Ньютона записывается:
или
Второй закон Ньютона действителен только для скоростей, много меньших скорости света и в инерциальных системах отсчёта. Для скоростей, приближенных к скорости света, используются законы теории относительности.
Нельзя
рассматривать частный случай (при
)
второго закона как эквивалент первого,
так как первый закон постулирует
существование ИСО, а второй формулируется
уже в ИСО.