
- •1 Основные кинематические величины
- •2 Движение по окружности
- •3 Криволинейное движение
- •4 Законы Ньютона
- •Первый закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Второй закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Третий закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Комментарии к законам Ньютона Сила инерции
- •Законы Ньютона и Лагранжева механика
- •Решение уравнений движения
- •5 Принцип независимости действия сил
- •Момент импульса в классической механике
- •Определение
- •Вычисление момента
- •8 Центр масс
- •Определение
- •Центры масс однородных фигур
- •В механике
- •Центр масс в релятивистской механике
- •Центр тяжести
- •9 Степени свободы (механика)
- •Примеры
- •Движение и размерности
- •Системы тел
- •Определение степеней свободы механизмов
- •10 Момент силы
- •Общие сведения
- •Предыстория
- •Единицы
- •Специальные случаи Формула момента рычага
- •Определение
- •Вычисление момента
- •Сохранение углового момента
- •11 Динамика твердого тела
- •***Можно не читать!***Динамика твердого тела
- •12 Момент инерции
- •Теорема Гюйгенса-Штейнера
- •Осевые моменты инерции некоторых тел
- •Центральный момент инерции
- •13 Теорема Штейнера
- •Работа силы
- •15 Работа - потенциальная сила
- •Работа силы (сил) над одной точкой
- •Работа силы (сил) над системой или неточечным телом
- •Кинетическая энергия
- •История
- •Физический смысл
- •Физический смысл работы
- •Релятивизм
- •Соотношение кинетической и внутренней энергии
- •Потенциальная энергия
- •О физическом смысле понятия потенциальной энергии
- •Физическая абстракция
- •Абсолютно упругий удар
- •Абсолютно неупругий удар
- •Реальный удар
- •Гидростатическое давление
- •Дифференциальное уравнение Бернулли
- •Сила вязкого трения
- •Вторая вязкость
- •Вязкость жидкостей Динамический коэффициент вязкости
- •Кинематическая вязкость
- •Ньютоновские и неньютоновские жидкости
- •Относительная вязкость
- •Ламинарный и турбулентный режим течения жидкости
- •Вязкость. Ламинарные и турбулентные режимы течения
- •Траектория материальной точки
- •Описание траектории
- •Связь со скоростью и нормальным ускорением
- •Связь с уравнениями динамики
- •Траектория свободной материальной точки
- •Движение под действием внешних сил в инерциальной системе отсчёта
- •Движение под действием внешних сил в неинерциальной системе отсчёта
- •Сила инерции
- •Терминология
- •Реальные и фиктивные силы
- •Эйлеровы силы инерции
- •Ньютоновы силы инерции
- •Д’Аламберовы силы инерции
- •Сила инерции на поверхности Земли
- •Силы Второй закон Ньютона
- •Третий закон Ньютона
- •Движение в инерциальной со
- •Движение в неинерциальной со
- •Общий подход к нахождению сил инерции
- •Движение тела по произвольной траектории в неинерциальной со
- •Работа фиктивных сил инерции
- •Существование инерциальных систем отсчёта
- •Эквивалентность сил инерции и гравитации
- •Принцип относительности
- •История
- •Специальная теория относительности
- •Создание сто
- •Основные понятия и постулаты сто
- •Основные понятия
- •Синхронизация времени
- •Линейность преобразований
- •Согласование единиц измерения
- •Изотропность пространства
- •Принцип относительности
- •Постулат постоянства скорости света
- •***Более простой вариант*** Постулаты Специальной Теории Относительности (сто)
- •Преобразования Лоренца
- •Преобразования Лоренца в физике
- •Вид преобразований при коллинеарных (параллельных) пространственных осях
- •Вывод преобразований
- •Разные формы записи преобразований Вид преобразований при произвольной ориентации осей
- •Преобразования Лоренца в матричном виде
- •Свойства преобразований Лоренца
- •Следствия преобразований Лоренца Изменение длины
- •Относительность одновременности
- •Замедление времени для движущихся тел Связанные определения
- •История
Сила инерции
Сила инерции (также инерционная сила) — термин, широко применяемый в различных значениях в точных науках, а также в философии, истории, публицистике и художественной литературе.
В точных науках сила инерции обычно представляет собой понятие, привлекаемое в целях удобства при рассмотрении движения материальных тел в неинерциальной системе отсчёта[1]. Частными случаями такой силы инерции являются центробежная сила и сила Кориолиса. Кроме того, силу инерции применяют для формальной возможности записывать уравнения динамики как более простые уравнения статики (кинетостатика, основанная на принципе Д’Аламбера)[2].
Вне контекста физики или математики термин «сила инерции» обычно означает некоторое свойство рассматриваемого явления, которое затрудняет изменения и, тем самым, обеспечивает поддержание status quo. В этом употреблении смысл термина зачастую никак не связан с физическим перемещением (изменением положения в пространстве) и понятием силы[3]. За исключением этого параграфа, статья посвящена значениям термина «сила инерции» в точных науках.
Терминология
Русский термин произошёл от французского словосочетания фр. force d'inertie. В других языках название силы более явно указывает на её фиктивность: в немецком нем. Scheinkräfte[4] («мнимая», «кажущаяся», «видимая», «ложная», «фиктивная» сила), в английском англ. pseudo force[5](«псевдо-сила») или англ. fictitious force («фиктивная сила»). Реже в английском используются названия «сила д’Аламбера» (англ. d’Alembert force[6]) и «инерционная сила» (англ. inertial force[7]).
Многообразие названий объясняется тем, что термин «сила инерции» применяется для описания трёх различных сил:
силы, которую удобно ввести при описании движения тела в неинерционной системе отсчёта («переносная сила инерции», «эйлерова сила инерции»[8]);
силы-противодействия из третьего закона Ньютона («ньютонова сила инерции»[9]);
фиктивной силы, применяющейся в принципе Д’Аламбера («даламберова сила инерции»[9]).
В результате многозначности термина «возникла путаница, которая продолжается и по сей день, и ведутся непрекращаюшиеся споры о том, реальны или нереальны (фиктивны) силы инерции и имеют ли они противодействие».
Кроме названия, все значения термина объединяет также векторная величина. Она равна произведению массы тела на его ускорение и направлена противоположно ускорению. Краткие определения силы инерции иногда отражают это общее свойство всех значений термина:
Векторная величина, равная произведению массы материальной точки на её ускорение и направленная противоположно ускорению, называется силой инерции[10].
Реальные и фиктивные силы
В литературе также употребляются термины «фиктивные» и «реальные» силы (последний термин в русскоязычной литературе употребляется редко). Разные авторы вкладывают в эти слова разный смысл:
у одних авторов реальные силы — это силы, с которыми одно тело непосредственно действует на другое (контактные силы) или силы взаимодействия тела с полями, а фиктивные — те, для которых источник силы указать невозможно[источник не указан 143 дня];
у других авторов реальные силы — это силы, которые совершают работу, а фиктивные — те, которые работы не совершают[источник не указан 143 дня];
в некоторых источниках реальные и фиктивные силы употребляются только в контексте принципа д’Аламбера, при этом реальными называются приложенные силы и силы реакции опор, а фиктивными — силы инерции[источник не указан 143 дня].
В зависимости от избранного определения, силы инерции оказываются реальными или фиктивными, поэтому употребление такой терминологии некоторые авторы считают неудачным и рекомендуют просто избегать её в учебном процессе[11].
В кругах физиков просматривается тенденция присоединять эпитет «фиктивная» к силам инерции любого типа[источник не указан 143 дня].