
- •1 Основные кинематические величины
- •2 Движение по окружности
- •3 Криволинейное движение
- •4 Законы Ньютона
- •Первый закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Второй закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Третий закон Ньютона
- •Современная формулировка
- •Историческая формулировка
- •Комментарии к законам Ньютона Сила инерции
- •Законы Ньютона и Лагранжева механика
- •Решение уравнений движения
- •5 Принцип независимости действия сил
- •Момент импульса в классической механике
- •Определение
- •Вычисление момента
- •8 Центр масс
- •Определение
- •Центры масс однородных фигур
- •В механике
- •Центр масс в релятивистской механике
- •Центр тяжести
- •9 Степени свободы (механика)
- •Примеры
- •Движение и размерности
- •Системы тел
- •Определение степеней свободы механизмов
- •10 Момент силы
- •Общие сведения
- •Предыстория
- •Единицы
- •Специальные случаи Формула момента рычага
- •Определение
- •Вычисление момента
- •Сохранение углового момента
- •11 Динамика твердого тела
- •***Можно не читать!***Динамика твердого тела
- •12 Момент инерции
- •Теорема Гюйгенса-Штейнера
- •Осевые моменты инерции некоторых тел
- •Центральный момент инерции
- •13 Теорема Штейнера
- •Работа силы
- •15 Работа - потенциальная сила
- •Работа силы (сил) над одной точкой
- •Работа силы (сил) над системой или неточечным телом
- •Кинетическая энергия
- •История
- •Физический смысл
- •Физический смысл работы
- •Релятивизм
- •Соотношение кинетической и внутренней энергии
- •Потенциальная энергия
- •О физическом смысле понятия потенциальной энергии
- •Физическая абстракция
- •Абсолютно упругий удар
- •Абсолютно неупругий удар
- •Реальный удар
- •Гидростатическое давление
- •Дифференциальное уравнение Бернулли
- •Сила вязкого трения
- •Вторая вязкость
- •Вязкость жидкостей Динамический коэффициент вязкости
- •Кинематическая вязкость
- •Ньютоновские и неньютоновские жидкости
- •Относительная вязкость
- •Ламинарный и турбулентный режим течения жидкости
- •Вязкость. Ламинарные и турбулентные режимы течения
- •Траектория материальной точки
- •Описание траектории
- •Связь со скоростью и нормальным ускорением
- •Связь с уравнениями динамики
- •Траектория свободной материальной точки
- •Движение под действием внешних сил в инерциальной системе отсчёта
- •Движение под действием внешних сил в неинерциальной системе отсчёта
- •Сила инерции
- •Терминология
- •Реальные и фиктивные силы
- •Эйлеровы силы инерции
- •Ньютоновы силы инерции
- •Д’Аламберовы силы инерции
- •Сила инерции на поверхности Земли
- •Силы Второй закон Ньютона
- •Третий закон Ньютона
- •Движение в инерциальной со
- •Движение в неинерциальной со
- •Общий подход к нахождению сил инерции
- •Движение тела по произвольной траектории в неинерциальной со
- •Работа фиктивных сил инерции
- •Существование инерциальных систем отсчёта
- •Эквивалентность сил инерции и гравитации
- •Принцип относительности
- •История
- •Специальная теория относительности
- •Создание сто
- •Основные понятия и постулаты сто
- •Основные понятия
- •Синхронизация времени
- •Линейность преобразований
- •Согласование единиц измерения
- •Изотропность пространства
- •Принцип относительности
- •Постулат постоянства скорости света
- •***Более простой вариант*** Постулаты Специальной Теории Относительности (сто)
- •Преобразования Лоренца
- •Преобразования Лоренца в физике
- •Вид преобразований при коллинеарных (параллельных) пространственных осях
- •Вывод преобразований
- •Разные формы записи преобразований Вид преобразований при произвольной ориентации осей
- •Преобразования Лоренца в матричном виде
- •Свойства преобразований Лоренца
- •Следствия преобразований Лоренца Изменение длины
- •Относительность одновременности
- •Замедление времени для движущихся тел Связанные определения
- •История
Работа силы (сил) над одной точкой
Работа нескольких сил определяется естественным образом как работа их равнодействующей (их векторной суммы). Поэтому дальше в этом параграфе будем говорить об одной силе.
При прямолинейном движении одной материальной точки и постоянном значении приложенной к ней силы работа (этой силы) равна произведению величины проекции вектора силы на направление движения и величины совершённого перемещения[3]:
Здесь
точкой обозначено скалярное
произведение,
—
вектор
перемещения; подразумевается,
что действующая сила
постоянна
в течение всего того времени, за которое
вычисляется работа.
Если сила не постоянна, то в этом случае она вычисляется как интеграл:
(подразумевается
суммирование по кривой, которая является
пределом ломаной, составленной из
последовательных перемещений
если
вначале считать их конечными, а потом
устремить длину каждого к нулю).
Если существует зависимость силы от координат, интеграл определяетсяследующим образом:
,
где
и
—
радиус-векторы
начального и конечного положения тела
соответственно.
Cледствие: если направление движения тела ортогонально силе, работа (этой силы) равна нулю.
Работа силы (сил) над системой или неточечным телом
Работа сил над системой материальных точек определяется как сумма работ этих сил над каждой точкой (работы, совершённые над каждой точкой системы, суммируются в суммарную работу этих сил над системой.
Даже если изначально тело не является системой дискретных точек, можно разбить его (мысленно) на множество бесконечно малых элементов (кусочков), каждый из которых считать материальной точкой, вычисляя работу в соответствии с определением выше. В этом случае дискретная сумма заменяется на интеграл.
Эти определения могут быть использованы как для какой-то конкретной силы или класса сил — для вычисления именно их работы отдельно, так и для вычисления полной работы, совершаемой всеми силами, действующими на систему.
17
Кинетическая энергия
Кинети́ческая эне́ргия — энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения.
Единица измерения в системе СИ — Джоуль.
Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением.
История
Впервые понятие кинетической энергии было введено в трудах Г. Лейбница, посвященных понятию «живой силы»
Физический смысл
Рассмотрим систему, состоящую из одной частицы, и запишем второй закон Ньютона:
—
есть
результирующая всех сил,
действующих на тело. Скалярно
умножим уравнение на перемещение
частицы
.
Учитывая, что
,
Получим:
Если
система
замкнута, то есть
,
то
,
а величина
остаётся постоянной. Эта величина называется кинетической энергией частицы. Если система изолирована, то кинетическая энергия является интегралом движения.
Для абсолютно твёрдого тела полную кинетическую энергию можно записать в виде суммы кинетической энергии поступательного и вращательного движения:
где:
— масса тела
—
скорость
центра
масс тела
—
момент
инерции тела
—
угловая
скорость тела.