Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
на экзамен ФОЭ.doc
Скачиваний:
17
Добавлен:
14.04.2019
Размер:
5.36 Mб
Скачать

69. Светодиоды.

Светодиоды - это излучающие полупроводниковые приборы с общим p-n переходом, преобразующие электрическую энергию в энергию некогерентного светового излучения.

Принцип действия светодиодов основан на использовании явления излучательной рекомбинации. Когда через p-n переход протекает прямой ток, то при этом происходит рекомбинация носителей, т.е. заполнение свободного энергетического уровня в валентной зоне электроном, находящимся в зоне проводимости, что, естественно, сопровождается выделением энергии. Чаще всего эта энергия выделяется в виде тепла, но можно подобрать такие полупроводниковые материалы, в которых явление рекомбинации будет сопровождаться излучением квантов лучистой энергии. Обычно это наблюдается в полупроводниках, представляющих собой двойные и тройные соединения. Так, светодиоды красного, желтого и зелёного свечения изготавливают на основе фосфида галлия, с фиолетовым свечением - на основе карбида кремния и т.д. Конструктивное оформление светодиодов также различное, однако чаще всего они выполняются в виде монокристалла полупроводника, в котором создан p-n переход; кристалл вмонтирован в стеклянный корпус- линзу, свободно пропускающую излучаемый свет (Рис.159).

Светодиоды нашли широкое применение в устройствах отображения информации, в вычислительных устройствах для ввода - вывода информации, а также в устройствах оптоэлектроники.

70. Оптоэлектронные устройства.

Оптоэлектроника - это область электроники, где используют методы преобразования световых сигналов в электрические и наоборот в системах передачи, обработки и хранения информации.

Э лементами оптоэлектронных устройств являются фотоэлектронные приборы, рассмотренные выше, а связь между элементами не электрическая, а оптическая. Таким образом, в оптоэлектронных устройствах практически полностью устранена гальваническая связь между входными и выходными цепями и практически полностью устранена обратная связь между входом и выходом. Комбинируя элементы, входящие в оптоэлектронные устройства, можно получать самые различные их функциональные свойства.

Простейшим оптоэлектронным устройством является оптрон.

Оптрон - это устройство, объединяющее в одном корпусе светодиод и приёмник фотоизлучения, например, фотодиод (Рис.160).

В ходной, усиливаемый сигнал UВХ поступает на светодиод и вызывает его свечение, которое по световому каналу поступает на фотодиод. Фотодиод открывается и в его цепи протекает ток под действием источника Е; на резисторе RH создаётся падение напряжения, которое представляет собой выходной сигнал UВЫХ , пропорциональный входному. Эффективную оптическую связь между элементами оптрона осуществляют с помощью средств волоконной оптики - световодов, выполненных в виде жгута из тонких прозрачных нитей, по которым сигнал передаётся за счёт полного внутреннего отражения с минимальными потерями и с высокой разрешающей способностью. Вместо фотодиода в составе оптрона может быть фототранзистор, фототиристор. Представляет интерес ещё один оптоэлектронный прибор - оптотранзистор с прямой оптической связью.

Схематическое устройство этого прибора приведено на (Рис.161). Эмиттерный переход здесь, как обычно, включают в прямом направлении. За счёт явления излучательной рекомбинации он излучает свет. Коллекторный переход смещается, как обычно, в обратном направлении. Излучение с эмиттерного перехода поглощается в области коллекторного перехода, где за счёт внутреннего фотоэффекта образуется дополнительные носители зарядов, обусловливающих протекание тока в коллекторной цепи. Для нормальной работы оптотранзистора необходимо, чтобы в области базы не поглощалось излучение, испускаемое эмиттерным p-n переходом. Для гальванической развязки входной и выходной цепей в базе параллельно с p-n переходами создают высокоомный слой, обеднённый носителями электрических зарядов. Оптотранзистор имеет высокое быстродействие по сравнению с обычными транзисторами, а прямая оптическая связь обеспечивает отсутствие отражения, которое может существовать на границах между фотоизлучателем и фотоприёмником.