
- •1.Факторы, влияющие на растворимость газов. В предельно разбавленных растворах растворимость газов пропорциональна их парциальному давлению над раствором -з-н Генри).
- •2.Зависимость растворимости газа от температуры.
- •Соударения молекул газа с поверхностью жидкости
- •3.Факторы,влияющие на растворимость газов в жидкостях
- •Природа растворённого газа и растворителя
- •Давление газа
- •Присутствие др. Вещ-в ( особенно электролитов)
- •4.Типы растворов жидкостей в жидкостях, причины их разнообразия.
- •5.Идеальные растворы. Построение их диаграммы «давление – состав», температура кипения – состав.
- •6.Вывод зависимости давления насыщенного пара смеси от состава жидкой и паровой фаз.
- •7. Реальные р-ры жидкостей неограниченно растворимые друг в друге. Причины отклонения давления паров над раствором от з-на Рауля.
- •8.Диаграммы давление –состав и температура – состав для реaльных растворов
- •9.Первый з-н Канавалова
- •10.Методы разделения смесей. Ректификация.
- •11. Диаграмма состояния р-ров ,образующих азеотропы.2й з-н Коновалова.
- •Термодинамическое док-во II з-на Кановалова
- •12.Диаграмма «давление – состав» и «температура – состав» Жидкости, ограниченно растворимых друг в друге.
- •13.Диаграммы “Давление-состав” и “температура-состав” для жидкостей, взаимно нерастворимых друг в друге.
- •15. Трехкомпанентные системы. Графическое представление. Определение методами Розебома и Гиббса.
- •19.Проводимость в газах, жидкостях и твердых телах. Электропроводность удельная и эквивалентная. Основные полож-я теории сильных эл-тов. Термодтнамика р-ров сильных эл-тов.
- •20. Скорость движ-ния иона,абсолютная ск-сть движ-я иона,подвижность.
- •21. Вывод уравнения, связывающего эквивалентную электропроводность с подвижностями ионов.
- •23.Влияние различных факторов на электропроводность для р-ров сильных электролитов.
- •25. Ионная сила р-ра. Ионный радиус, ионная атмосфера. Электрофоретическое и релаксационное торможение. Эффект Вина,понятие дисперсии электропроводности.
- •26. Активности и коэффициенты активности электролитов. Вычисление средних коэффициентов активности ионов.
- •27. Кондуктометрическое титрование как метод определения точки эквивалентности при титровании, изменения состава растворов для расчета степени диссоциации, констант диссоциации.
- •28. Понятие об электродвижущих силах, полуэлементе, элементе. Термодинамический вывод уравнения для определения электродного потенциала, уравнение Нернста.
- •29. Термодинамика гальванических элементов.
- •30. Водородный скачок потенциала. Стандартные электродные потенциалы.
- •31. Виды гальванических элементов. Электроды 1-го и 2-го рода. Обратимые, необратимые цепи. Знаки эдс-элементов. Вычисление эдс обратимого гальванического элемента.
- •32. Окислительно-восстановительные электроды или редокс-элементы.
- •33. Химические цепи. Уравнение для расчета эдс.
- •34. Концентрационные цепи. Уравнение для расчета эдс
- •35. Диффузионный скачок потенциала.
- •Потенциометрическое титрование. Электрохимические методы определения рН растворов.
- •Основные понятия химической кинетики: молекулярность, скорость реакции (начальная, истинная и средняя), константа скорости.
- •Вывести уравнение Аррениуса. Энергия активации. Предэкспоненциальный множитель. Методы их определения.
- •39. Порядок реакции по реагенту и методы его экспериментального определения. Лимитирующая стадия химического процесса.
- •Вывод интегрального кинетического уравнения для необратимой и обратимой реакции первого порядка.
- •Вывод интегрального кинетического уравнения для необратимой реакции второго порядка.
- •Вывести уравнение кинетики для параллельных реакций.
- •Вывести уравнение кинетики для гомогенной необратимой последовательной реакции первого порядка
- •Вывести уравнение скорости процесса в потоке, режим идеального вытеснения в стационарных условиях.
- •45. Кинетика гомогенных реакций первого порядка, протекающих в условиях идеального перемешивания.
- •Теория активных соударений и расчет скорости по числу соударений.
- •47. Теория переходного состояния и вывод основного уравнения.
- •50.Кинетика р-ий с неразветвленными цепями.
- •51.Вывод кинетических уравнений цепных р-ий в стационарном приближении
- •52.Пределы воспламенения и взрыва. Механизмы вопламенения.
- •53. Связь кинетики и макрокинетики при протекании экзотермических реакций (теория теплового взрыва)
- •Теория теплового взрыва была разработана в работах Зельдовича и Франк-Каменецкого. Кратко рассмотрим анализ теплового режима в случае сильно экзотермической реакции.
- •Где cp и r означают молярную теплоемкость и плотность газообразной смеси. Окончательное выражение для критической температуры t* имеет вид
- •55.Особенности кинетики р-ий в р-рах. Влияние природы р-рителя на скорость процесса, ур-ие Бренстеда.
- •56. Влияние ионной силы и давления на кинетику реакций в растворе.
- •Если в бимолекулярной реакции реагенты а и в представляют собой ионы с зарядами zА и zВ, и заряд ак z* в линейном приближении равен сумме
- •Тогда из выражения (5.7) можно выразить влияние ионой силы j на константу скорости реакции в растворе:
- •Или для водных растворов
- •58.Общий и специфич. Кислотно-основ.Катализ.
- •59.Катализ комплексами переходных металлов и ферментатив.Катализ.
- •63.Температурная зависимость наблюдаемой скорости реакции
- •70.Топохимические реакции.
19.Проводимость в газах, жидкостях и твердых телах. Электропроводность удельная и эквивалентная. Основные полож-я теории сильных эл-тов. Термодтнамика р-ров сильных эл-тов.
Присутствие свободных электронов или ионов придает им способность проводить электрический ток. Проводимость системы можно назвать способность переносить электрич-кий такими носителями токак как электроны или ионы. Проводимость может быть электронной, ионной или смешанной. В случае электронной переносятся электронами, а ионы закреплены в решетке твердого тела. Эл.пр-сть не связана с переносом в-ва из одного участка проводника к другому. Это проводники 1-го рода( металлы, расплавы некоторых металлов и солей и неводные р-ры). Если перенос эергии осущ-ся катионами или анионами,то в нихпроисходит перенос в-ва ионами из одного участка к другому.Такие проводники 2-го рода( водные р-ры кислот, оснований и различных солей, некоторые неводные р-ры и расплавы солей). Способность переносить ток зависит от природы проводник, его состава и структуры, а также воздействия внешних параметров.
Удельная электропроводность жидкости χ - это электропроводность 1 см3 раствора, заполняющего пространство между плоскими электродами одинаковой, оч. большой площади ( в см2), находящимися на расстоянии 1см.
- Зависит от природы элек-та и раст-ля, от концентрации р-ра, от Т.
- При ↑ кон-ции слаб. элек-та, χ ↓
- При ↑ кон-ции сильн. элек-та, сначала ↑ затем ↓.
- При ↑ Т, χ ↑.
Эквивалентная электропроводность λ – это электропроводность такого объема (см3) раствора в котором содержится 1 г-экв растворенного вещества, причем электроды находятся на расстоянии 1 см друг от друга. [см2/г-экв*ом]
где φ – разведение, [см3/г-экв]
с – эквивалентная концентрация, [г-экв/л]К
- При ↓ кон-ции р-ра элек-та, λ ↑;
- λ=мах будет при бесконеч. разбавлении
Эмпирическая формула Кольрауша:
λ=λ∞-А√с
Сильные электролиты в разб-ных и конц-ных р-рах диссоциируют полностью. Св-ва нужно изучать определяя структуру р-ров.Для развития тиории растворов сильных электролитов необходимо учитывать свойства, размеры и состояние гидратных оболочек и так далее.
20. Скорость движ-ния иона,абсолютная ск-сть движ-я иона,подвижность.
1. природа иона
2. напряженность поля E/l
3.концентрации. (уд. э\проводность на графике ae=f(с,моль\л)- радуга; экв.э\проводность λ=с,г*экв\л – горка вогнутая к 0, вниз.
4. температуры (с ней растут уд.э\проводность и предел подвижности, у металлов наоборот)
5. вязкости среды
Скорость движения иона (vi,ui – скорости движения А- и К+ соответственно) определяется силой, действующей на ион, кот. равна произведению заряда иона на градиент потенциала поля, и фактором R, характеризующим сопротивление среды, зависящей от T, природы иона и раств-ля .Прямо пропорциональна напряженности.
zi
– заряд иона; E/l
– напряженность поля, градиент поля
Зависит от: природы ионов, Е\l, концентрации, температуры, вязкости среды.
Аналогично для ui
Абсолют. Скорость движ. ионов применяется при сравнении скоростей ионов, если напряженность поля =1 в/см. Скорость при единичном градиенте потенциала.
v=ezi/R (то же для u)
Подвижность ионов – кол-во электр-ва, переносящееся ионом равно произведению абсолютной скорости ионов на число Фарадея.
V=v*F и U=u*F
Число переноса ионов i-го вида – отношение кол-ва электр-ва qi (зависит от zi, конц., скорости движения в электрическом поле), перенесен. данным видом ионов, к общему кол-ву электр-ва q, перенесен. всеми видами ионов, находящихся в р-ре ti=qi/q.
Ионная сила р-ра (ионная крепкость) называется полусумма произв-ний кон-ций каждого иона на квадрат числа его зарядов z (валентность), взятая для всех ионов р-ра.
I = ½ ∑mizi2
где mi – молярность (мера концентрации)
Эмпирический закон ионной силы:
Сред. ионный коэф. активности γ+/- явл. универсальной функцией ионной силы I р-ра, т.е. в р-ре с данной ионной силой все диссоциирующие в-ва им. коэф-ты активности, не зависящие от природы и концентрации данного в-ва, но зависящие от числа и валентности его ионов.