
- •Глава 4
- •4.1. Какие задачи решает сетевое планирование?
- •4.2. На основании каких сведений строятся сетевые графики?
- •4.3. Почему сетевой график не имеет контуров?
- •4.4. Как связаны минимальные моменты свершения событий с длинами путей на сетевом графике?
- •4.5. Как связаны максимальные моменты свершения событий с длинами путей на сетевом графике?
- •4.6. Описать хотя бы два метода восстановления критического пути.
- •4.7. Какой содержательный смысл свободного резерва времени работ на сетевом графике?
- •4.8. В каких целях в сетевом планировании используют линейные диаграммы?
- •4.9. Как на линейной диаграмме найти основные временные параметры сетевого графика?
- •4.10. В чем суть задачи оптимального распределения ограниченного ресурса в сетевом планировании?
- •4.11. Как строится график использования ресурса во времени на основе линейной диаграммы?
- •Глава 5
- •5.1. В чем состоит существенная разница между задачами сетевого планирования и теории расписаний?
- •5.2. Описать общую задачу теории расписаний.
- •5.4. Сформулировать задачу Беллмана-Джонсона.
- •5.5. Описать множество допустимых решений в задаче Беллмана-Джонсона.
- •5.6. Как найти общее время обслуживания заявок в задаче Беллмана-Джонсона при заданной очередности обслуживания?
- •5.7. Сформулировать теорему об оптимальном расписании в задаче Беллмана-Джонсона с двумя приборами.
- •5.8. В чем состоит задача коммивояжера?
- •5.9. Построить математическую модель задачи коммивояжера.
- •5.10. В чем разница между моделями классической задачи о назначениях и задачей коммивояжера?
- •5.11. Сформулировать одностадийную задачу без задержек в обслуживании заявок.
- •5.11’. Сформулировать многостадийную задачу без задержек в обслуживании заявок.
- •5.12. Как строится дерево ветвлений в общей схеме ветвей и границ?
- •5.13. Сформулировать основное требование к способам вычисления нижних границ в методе ветвей и границ.
- •5.14. Описать схему метода ветвей и границ при максимизации множества допустимых решений.
- •5.15. Как строить дерево ветвлений и вычислять нижние границы целевой функции для задачи о рюкзаке?
- •5.16. Как строить дерево ветвлений и вычислять нижние границы целевой функции для задачи коммивояжера?
- •5.17. Как строить дерево ветвлений и вычислять нижние границы целевой функции для задачи Беллмана-Джонсона?
- •5.18. Описать общий принцип оптимальности в динамическом программировании.
- •5.19. Описать рекуррентные соотношения для применения метода динамического программирования.
- •5.20. Описать рекуррентные соотношения для применения метода к задаче о распределении инвестиций.
- •5.21. Описать рекуррентные соотношения для применения метода динамического программирования задаче коммивояжера.
- •Глава 6
- •6.1. В чем состоит основное отличие задач массового обслуживания от задач теории расписаний?
- •6.2. Описать составляющие задач массового обслуживания.
- •6.3. Как классифицировать задачи массового обслуживания.
- •6.4. Какая величина может в первую очередь характеризовать эффективность системы массового обслуживания?
- •6.5. Описать свойства простейших потоков заявок.
- •6.6. Что означает для системы массового обслуживания символ d/m/3?
- •6.7. Как различаются состояния и переходы между ними в процессах гибели и размножения?
- •6.8. Какой смысл предельных вероятностей состояний в процессах гибели и размножения?
- •6.9. Описать системы массового обслуживания с потерями.
- •6.10. Какой вид может иметь граф переходов между состояниями в системах массового обслуживания с потерями?
- •6.11. Описать системы массового обслуживания с ожиданием и конечной очередью.
- •6.12. Какой вид может иметь граф переходов между состояниями в системах массового обслуживания с ожиданием и конечной очередью?
- •6.13. Какой вид может иметь граф переходов между состояниями в системах массового обслуживания с ожиданием при неограниченном числе мест в очереди?
- •6.14. Описать граф переходов между состояниями в замкнутых системах массового обслуживания.
- •6.15. Описать граф переходов между состояниями в системах массового обслуживания с ограниченным временем ожидания в очереди.
- •Глава 7
- •7.1. Описать сущность задач управления запасами.
- •7.2. Описать управляемые и неуправляемые переменные в задачах управления запасами.
- •7.3. Построит математическую модель статической задачи управления запасами с одним плановым периодом.
- •7.4. Что такое -стратегия и при каких условиях она является наилучшей формой пополнения запасов?
- •7.5. Описать схему нахождения величин и в -стратегии,
- •7.6. Построить математическую модель выбора размера заказываемой партии при детерминированном спросе.
- •7.7. Как находится экономически выгодный размер заказываемой партии?
- •7.8. Описать задачу выбора размера заказываемой партии, если спрос носит случайный характер.
- •Глава 8
- •8.1. В каких случаях можно говорить об играх с природой?
- •8.2. Описать математическую модель игры с природой.
- •8.3. Описать не менее трех из пяти классических приемов решения игры с природой.
- •8.4. Что может быть математической моделью конфликтной ситуации?
- •8.5. Описать математическую модель безкоалиционной игры. Что является решением такой игры?
- •8.6. Дать определение ситуации оптимальной по Парето.
- •8.7. Описать ситуации в бескоалиционной игре, равновесные по Нэшу.
- •8.8. Описать математическую модель антагонистической игры.
- •8.9. Какие величины в матричной игре являются гарантированным выигрышем для каждого из игроков?
- •8.10. Что называется ситуацией равновесия (по Нэшу) в матричной игре без седловой точки?
- •8.11. Описать один из возможных методов решения любой матричной игры.
- •8.12. Описать графический метод решения матричных игр (или ).
- •8.13. В каких случаях требуется изучать игры в развернутой (позиционной) форме?
- •8.14 Как строится дерево позиционной игры? Какие пометки имеют вершины и дуги этого дерева?
- •8.15. Описать свойства информационных множеств в позиционной игре.
- •8.20. Дать определение характеристической функции и дележа в коалиционной игре.
- •8.21. Дать определение существенных и несущественных коалиционных игр и описать их свойства.
- •8.22. Что такое с-ядро коалиционной игры?
- •8.23. Дать определение вектора Шепли.
- •8.24. Как построить вектор цен Шепли во взвешенных мажоритарных играх?
5.8. В чем состоит задача коммивояжера?
Пусть
имеется
пунктов,
занумерованных в некотором порядке
.
Для каждой пары
этих
пунктов известно “расстояние”
.
Термин “расстояние” может означать
физическое расстояние между этими
пунктами, время перехода из пункта
в пункт
,
стоимость такого перехода или количество
затраченного горючего. Значения
образуют квадратную матрицу
,
у которой элементы на главной диагонали
не определены и, например, обозначены
символом
.
В этой матрице не обязательно
,
то есть она может быть не симметричной.
Коммивояжер, начиная от некоторого начального пункта, например, пункта 1, должен обойти все остальные, побывав в каждом пункте по одному разу таким образом, чтобы его маршрут был оптимален по какому-либо критерию. Чаще всего оценкой маршрута является его “длина” как сумма “расстояний” непосредственных переходов в выбранном маршруте. Коммивояжер должен выбрать маршрут наименьшей длины.
5.9. Построить математическую модель задачи коммивояжера.
Через
обозначим переменные, такие, что
,
если коммивояжер включил в свой маршрут
переход от пункта
до пункта
,
и
,
в противном случае. В задаче необходимо
определить значения
,
при которых функция
(5.2.1)
принимает минимальное значение и для которых выполняются условия
,
(5.2.2)
,
(5.2.3)
,
(5.2.4)
множество
должно
определять замкнутый маршрут.
(5.2.5)
Условие
(5.2.2) говорит о том, что коммивояжер
обязан переходить из пункта
только в один из остальных пунктов.
Условие (5.2.3) требует, чтобы в каждый
пункт
осуществлялся переход только из одного
пункта.
Целевая функция (5.2.1) и ограничения (5.2.2)-(5.2.4) в точности совпадают с моделью классической задачи о назначениях (§3.6). Проанализируем детально сущность дополнительного условия (5.2.5).
Условие (5.2.5) требует, чтобы любой маршрут коммивояжера был полным циклом.
5.10. В чем разница между моделями классической задачи о назначениях и задачей коммивояжера?
Разница
заключается в условии (5.2.5). Это означает,
что если на матрице расстояний
в задаче коммивояжера решить задачу о
назначениях с минимизацией целевой
функции и если это решение будет полным
циклом, то оно одновременно будет
решением задачи коммивояжера.
5.11. Сформулировать одностадийную задачу без задержек в обслуживании заявок.
Пусть
заявок необходимо обслужить на одном
приборе, причем известны времена
,
продолжительностей такого обслуживания.
Кроме того, известно, что если после
обслуживания заявки
будет обслуживаться заявка
,
то необходима переналадка прибора,
которая длится
единиц времени. Эти величины образуют
матрицу
.
Задача состоит в том, чтобы найти такую очередность обслуживания всех заявок, при которой суммарное время обслуживания будет минимальным.
Если
перестановка
определяет очередность обслуживания
заявок, то общее время этого обслуживания
равно
.
Очевидно,
что первое слагаемое в этой сумме не
зависит от порядка обслуживания и
является величиной постоянной. Второе
слагаемое зависит от очередности
обслуживания и поиск оптимальной
очередности сводится к поиску перестановки,
которая минимизирует
.
Если все
представить на расширенной матрице
то, очевидно, что решение задачи коммивояжера для этой матрицы “расстояний ” определит искомое оптимальное расписание для нашей одностадийной задачи обслуживания заявок. Оно получится из оптимального маршрута коммивояжера с началом в пункте 0 формальным удалением этого пункта.