Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
экзамен химия.docx
Скачиваний:
13
Добавлен:
22.12.2018
Размер:
997.42 Кб
Скачать

Технология получения металлических сплавов

Получение чугуна и стали. Технологический процесс получения черных металлов включает выплавку чугуна из железных руд с последующей переработкой его в сталь.

Основным способом получения чугуна является доменный. Доменный процесс состоит из трех стадий: восстановление железа из оксидов, содержащихся в руде, науглероживание железа и шлакообразование. Сырьевыми материалами служат железные руды, топливо и флюсы.

Железные руды до плавки обычно подвергают предварительной подготовке: дроблению, обогащению и окускованию. Обогащают измельченную руду часто магнитной сепарацией. Для удаления песчаных и глинистых частиц промывают водой. Окускова-ние мелких и пылеватых руд производится агломерацией — путем спекания на колосниковых решетках агломерационных машин или окатывания в грануляторе с последующей сушкой и обжигом. Основным топливом при плавке чугуна служит кокс, который является источником тепла и непосредственно участвует в восстановлении и науглероживании железа. Флюсы (известняки, доломиты или песчаники) применяют для снижения температуры плавления пустой породы и связывания ее с золой топлива в шлак.

Доменная печь представляет собой вертикальную шахту высотой до 35 м и более со стенами из огнеупорного кирпича, заключенными в стальной кожух. Сверху в печь послойно загружают подготовленные сырьевые материалы. В результате горения кокса за счет кислорода воздуха, нагнетаемого в нижнюю часть печи, образуется оксид углерода, который восстанавливает железо из руды и может взаимодействовать с ним, при этом образуется карбид Ре3С — цементит.

Одновременно с восстановлением железа восстанавливаются кремний, фосфор, марганец и другие примеси.

Расплавленные при температуре 1380—1420°С чугун и шлак выпускают через летки. Чугун разливается в формы, а шлак идет на переработку. В доменных печах выплавляют передельный чугун, идущий на переработку в сталь, литейный чугун, используемый для получения разнообразных чугунных изделий, и специальные чугуны (ферросилиций, ферромарганец), применяемые в производстве стали как раскислители или легирующие добавки.

Сталь получают из передельного чугуна окислением с помощью мартеновского, конвертерного и электроплавильного способов. Основным способом производства стали в СССР и других странах мира является мартеновский способ, но в последние годы широкое распространение находит кислородно-конвертерный способ, обладающий существенными технико-экономическими преимуществами.

При мартеновском способе сталь получают в мартеновских печах, в плавильном пространстве которых сжигается газ или мазут, а в специальных камерах — регенераторах подготавливаются поступающие в печь воздух и газообразное топливо за счет аккумулированного тепла отходящих продуктов горения. Шихта включает чугун в чушках и металлический лом — скрап или жидкий чугун, скрап и железную руду. Процесс получения стали заключается в плавлении шихты, при котором образуется большое количество закиси железа, окислении углерода и других примесей закисью железа и раскислении — восстановлении железа из закиси добавками ферросилиция, ферромарганца или алюминия.

60.

Химическая связь — явление взаимодействия атомов, обусловленное перекрыванием электронных облаков связывающихся частиц, которое сопровождается уменьшением полной энергии системы.

При образовании ковалентной химической связи важную роль в уменьшении полной энергии играет обменное взаимодействие.

энергия связи (для данного состояния системы) — разность между полной энергией связанного состояния системы тел или частиц и энергией состояния, в котором эти тела или частицы бесконечно удалены друг от друга и находятся в состоянии покоя:

где  — энергия связи компонентов в системе из i компонент (частиц),  — полная энергия i-го компонента в несвязаннном состоянии (бесконечно удалённой покоящейся частицы) и  — полная энергия связанной системы.

Для системы, состоящей из бесконечно удалённых покоящихся частиц энергию связи принято считать равной нулю, т.е. при образовании связанного состояния энергия выделяется. Энергия связи равна минимальной работе, которую необходимо затратить, чтобы разложить систему на составляющие её частицы и характеризует стабильность системы: чем выше энергия связи, тем система стабильнее.

Для валентных электронов (электронов внешних электронных оболочек) нейтральных атомов в основном состоянии энергия связи совпадает с энергией ионизации, для отрицательных ионов - со сродством к электрону.

Энергии химической связи двухатомной молекулы соответствует энергия её термической диссоциации составляет порядка сотен кДж/моль.

Энергия связи адронов атомного ядра определяется сильным взаимодействием. Для легких ядер она составляет ~0.8 МЭв на нуклон.

Валентный угол — угол, образованный направлениями химических связей, исходящими из одного атома. Знание валентных углов необходимо для определения геометрии молекул. Валентные углы зависят как от индивидуальных особенностей присоединенных атомов, так и от гибридизации атомных орбиталей центрального атома. Для простых молекул валентный угол, как и другие геометрические параметры молекулы, можно рассчитать методами квантовой химии. Экспериментально их определяют из значений моментов инерции молекул, полученных путем анализа их вращательных спектров (смотри Инфракрасная спектроскопия, Молекулярные спектры, Микроволновая спектроскопия). Валентный угол сложных молекул определяют методами дифракционного структурного анализа.

Длина связи (LСВ )– расстояние между ядрами связанных атомов. Измеряется в нанометрах (нм) или в ангстремах (А). Чем короче связь, тем она, как правило, прочнее.

Насыщаемость связи – если атом образует конечное число связей с другими атомами (обычно не более 8) – связь насыщаема, если бесконечно большое (больше 1000) – ненасыщаема.

Направленность связи – если в пространстве существуют определенные направления, вдоль которых распространяется действие связи, то связь направлена, если таких направлений нет – то ненаправлена.

Энергия и длина связи характерны для любой химической связи, насыщаемость и направленность зависят от вида связи.