Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
экзамен химия.docx
Скачиваний:
6
Добавлен:
22.12.2018
Размер:
997.42 Кб
Скачать
  1. А́том — наименьшая химически неделимая часть химического элемента, являющаяся носителем его свойств. Атом состоит из атомного ядра и электронов. Ядро атома состоит из положительно заряженных протонов и незаряженных нейтронов. Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. Атомы различного вида в разных количествах, связанные межатомными связями, образуют молекулы.

Ква́нтовое число́ в квантовой механике — численное значение какой-либо квантованной переменной микроскопического объекта характеризующее состояние частицы. Задание квантовых чисел полностью характеризует состояние частицы.

Главное квантовое число (n). Определяет энергетический уровень электрона, удаленность уровня от ядра, размер электронного облака. Принимает целые значения (n = 1, 2, 3 ...) и соответствует номеру периода. Из периодической системы для любого элемента по номеру периода можно определить число энергетических уровней атома и какой энергетический уровень является внешним.

Орбитальное квантовое число (l) характеризует геометрическую форму орбитали. Принимает значение целых чисел от 0 до (n - 1). Независимо от номера энергетического уровня, каждому значению орбитального квантового числа соответствует орбиталь особой формы. Набор орбиталей с одинаковыми значениями n называется энергетическим уровнем, cодинаковыми n и l - подуровнем.

Для

l=0 s- подуровень, s- орбиталь – орбиталь сфера

l=1 p- подуровень, p- орбиталь – орбиталь гантель

l=2 d- подуровень, d- орбиталь – орбиталь сложной формы

f-подуровень, f-орбиталь – орбиталь еще более сложной формы

На первом энергетическом уровне (n = 1) орбитальное квантовое число l принимает единственное значение l = (n - 1) = 0. Форма обитали - сферическая; на первом энергетическом только один подуровень - 1s. Для второго энергетического уровня (n = 2) орбитальное квантовое число может принимать два значения: l = 0, s- орбиталь - сфера большего размера, чем на первом энергетическом уровне; l =  1, p- орбиталь - гантель. Таким образом, на втором энергетическом уровне имеются два подуровня - 2s и 2p. Для третьего энергетического уровня (n = 3) орбитальное квантовое число l принимает три значения: l = 0, s- орбиталь - сфера большего размера, чем на втором энергетическом уровне; l = 1, p- орбиталь - гантель большего размера, чем на втором энергетическом уровне; l = 2, d- орбиталь сложной формы.

Таким образом, на третьем энергетическом уровне могут быть три энергетических подуровня - 3s, 3p и 3d.

Магнитное квантовое число (m) характеризует положение электронной орбитали в пространстве и принимает целочисленные значения от -I до +I, включая 0. Это означает, что для каждой формы орбитали существует (2l + 1) энергетически равноценных ориентации в пространстве.

Для s- орбитали (l = 0) такое положение одно и соответствует m = 0. Сфера не может иметь разные ориентации в пространстве.

Для p- орбитали (l = 1) - три равноценные ориентации в пространстве (2l + 1 = 3): m = -1, 0, +1.

Для d- орбитали (l = 2) - пять равноценных ориентаций в пространстве (2l + 1 = 5): m = -2, -1, 0, +1, +2.

Таким образом, на s- подуровне - одна, на p- подуровне - три, на d- подуровне - пять, на f- подуровне - 7 орбиталей.

Спиновое квантовое число (s) характеризует магнитный момент, возникающий при вращении электрона вокруг своей оси. Принимает только два значения +1/2 и –1/2 соответствующие противоположным направлениям вращения.

2.

Моль (обозначение: моль, международное: mol) — единица измерения количества вещества. Соответствует количеству вещества, в котором содержится NAчастиц (молекул, атомов, ионов, или любых других тождественных структурных частиц).[1] NA это постоянная Авогадро, равная количеству атомов в 12 граммахнуклида углерода 12C.

Иначе говоря, моль — это количество вещества, масса которого, выраженная в граммах, численно равняется его массе в атомных единицах массы. Иногда моль молекул, атомов или ионов называют, соответственно, грамм-молекулой, грамм-атомом и грамм-ионом.

Закон сохранения массы — исторический закон физики, согласно которому масса как мера количества вещества сохраняется при всех природных процессах, то есть несотворима и неуничтожима .

В настоящее время известен ряд условий, при которых данный закон нарушается — например, при радиоактивном распаде совокупная масса вещества уменьшается. В современной физике закон сохранения массы является частным случаемзакона сохранения энергии, и он выполняется только в консервативных физических системах, то есть при отсутствии энергообмена с внешней средой.

Период — строка периодической системы химических элементов, последовательность атомов по возрастанию заряда ядра и заполнению электронами внешней электронной оболочки.

Ковалентная связь (атомная связь, гомеополярная связь) — химическая связь, образованная перекрытием (обобществлением) пары валентных электронных облаков. Обеспечивающие связь электронные облака (электроны) называются общей электронной парой.

Раство́р — гомогенная (однородная) смесь, состоящая из частиц растворённого вещества, растворителя и продуктов их взаимодействия.

3.

Донорно-акцепторный механизм (иначе координационный механизм) — способ образования ковалентной химической связи между двумя атомами или группой атомов, осуществляемая за счет неподеленной пары электронов атома-донора и свободной орбитали атома-акцептора.

например, связи N—H в ионе аммония NH4+ или связи O—H в ионе гидроксония Н3O+

Водородная связь — форма ассоциации между электроотрицательным атомом и атомом водорода H, связанным ковалентно с другим электроотрицательным атомом. В качестве электроотрицательных атомов могут выступать N, O или F. Водородные связи могут быть межмолекулярными иливнутримолекулярными. [1]

4.

Ио́нное произведе́ние воды́ — произведение концентраций ионов водорода Н+ и ионов гидроксида OH в воде или в водных растворах, константа автопротолиза воды.

Водоро́дный показа́тельpH (произносится «пэ аш», английское произношение англ. pH — piː'eɪtʃ «Пи эйч») — мера активности (в очень разбавленных растворах она эквивалентна концентрации) ионов водорода в растворе, и количественно выражающая его кислотность, вычисляется как отрицательный (взятый с обратным знаком) десятичный логарифм активности водородных ионов, выраженной в молях на литр:

5.

эквивалент вещества или Эквивалент — это реальная или условная частица, которая может присоединять, высвобождать или другим способом быть эквивалентна катиону водорода в ионообменных реакциях или электрону в окислительно-восстановительных реакциях[1][2].

Например, в реакции:

NaOH + HCl = NaCl + H2O

эквивалентом будет реальная частица — ион Na+, в реакции

Zn(OH)2 + 2HCl = ZnCl2 + 2H2O

эквивалентом будет являться мнимая частица ½Zn(OH)2.

Под эквивалентом вещества также часто подразумевается количество эквивалентов вещества или эквивалентное количество вещества — число мольвещества эквивалентное одному моль катионов водорода в рассматриваемой реакции.

Закон эквивалентов

-вещества взаимодействуют друг с другом в количествах, пропорциональных их эквивалентам. При решении некоторых задач удобнее пользоваться другой формулировкой этого закона: массы (объемы) реагирующих друг с другом веществ пропорциональны их эквивалентным массам (объемам).

6.

Общая характеристика растворов.

Растворами называются гомогенные системы переменного состава, в которых растворенное вещество находится в виде атомов, ионов или молекул, равномерно окруженных атомами, ионами или молекулами растворителя. Любой раствор состоит по меньшей мере из двух веществ, одно из которых считается растворителем, а другое - растворенным веществом. Растворителем считается компонент, агрегатное состояние которого такое же, как и агрегатное состояние раствора. Деление это довольно условно, а для веществ, смешивающихся в любых соотношениях (вода и ацетон, золото и серебро), лишено смысла. В этом случае растворителем считается компонент, находящийся в растворе в большем количестве.

Раствор, в котором вещество при данной температуре уже больше не растворяется, или иначе, раствор, находящийся в равновесии с растворяемым веществом, называется насыщенным. Для большинства твердых веществ растворимость в воде увеличивается с повышением температуры. Если раствор, насыщенный при нагревании, осторожно охладить так, чтобы не выделялись кристаллы, то образуется пересыщенный раствор. Пересыщенным называется раствор, в котором при данной температуре содержится большее количество растворенного вещества, чем в насыщенном растворе. Пересыщенный раствор крайне нестабилен и при изменении условий (энергичное встряхивание или внесение активных центров кристаллизации - кристалликов соли, пылинок) образуется насыщенный раствор и кристаллы соли. Раствор, содержащий меньше растворенного вещества, чем насыщенный, называется ненасыщенным раствором.

7.

Валентность и степень окисления

Современные представления о природе химической связи основаны на электронной теории валентности. Согласно этой теории, атомы, образуя химические связи, стремятся к достижению наиболее устойчивой электронной конфигурации (имеет наименьшую энергию).

Электроны, принимающие участие в образовании химической связи, называются валентными. Валентность атома определяется числом его неспаренных электронов, участвующих в образовании химических связей с другими атомами, а также числом обобществленных электронных пар в ковалентных соединениях. Валентность всегда выражается небольшими целыми числами.

Различают атомы элементов, имеющих постоянную валентность: H, Na, Ca, Al и др., и атомы элементов, проявляющих переменную валентность: C, S, Cl, Cu и т.д. Переменная валентность связана с возможностью распаривания и спаривания электронов (обычно в пределах одного энергетического уровня). Энергия, затраченная на распаривание электронов в пределах одного энергетического уровня, как правило, полностью компенсируется энергией, выделяющейся при образовании дополнительных химических связей.

Но в соединении электроны, образующие химическую связь, смещены к наиболее электроотрицательному атому, и, следовательно, он приобретает определенный отрицательный заряд. В соответствии с этим определением введено понятие степени окисления; оно облегчает установление формул соединений элементов, существующих в нескольких валентных состояниях и полезно при составлении уравнений окислительно – восстановительных реакций.

Степенью окисления называется формальный заряд атома в молекуле, вычисленный исходя из предположения, что все связи атомов в молекуле ионные. Понятие степени окисления имеет чисто условный характер и не отвечает реальному распределению зарядов между атомами в молекуле. В органической химии понятие степени окисления обычно не используется.

Для вычисления степени окисления элемента в соединении следует исходить из следующих положений:

1) степени окисления элементов в простых веществах принимаются равными нулю;

2) алгебраическая сумма степеней окисления всех атомов в соединении (с учетом числа атомов), равна нулю;

3) постоянная степень окисления в соединениях проявляют щелочные металлы (+1), металлы главной подгруппы II группы, цинк (+2), алюминий (+3) и кадмий (+2);

4) водород проявляет степень окисления +1 во всех соединениях, кроме гидридов металлов NaH, CaH2 и т.п., где его степень окисления равна -1;

5) степень окисления кислорода в соединениях равна -2, за исключением пероксидов (-1) и фторида кислорода OF2 (+2).

8.

Химическая связь - это взаимодействие двух атомов, осуществляемое путем обмена электронами. При образовании химической связи атомы стремятся приобрести устойчивую восьмиэлектронную (или двухэлектронную) внешнюю оболочку, соответствующую строению атома ближайшего инертного газа. Различают следующие виды химической связи:ковалентная (полярная и неполярная; обменная и донорно-акцепторная), ионнаяводородная и металлическая.

КОВАЛЕНТНАЯ СВЯЗЬ - существляется за счет электронной пары, принадлежащей обоим атомам. Различают обменный и донорно-акцепторный механизм образования ковалентной связи.

 

1)     Обменный механизм. Каждый атом дает по одному неспаренному электрону в общую электронную пару:

 

 

2)     Донорно-акцепторный механизм. Один атом (донор) предоставляет электронную пару, а другой атом (акцептор) предоставляет для этой пары свободную орбиталь;

Ионная - Ионы - это заряженные частицы, в которые превращаются атомы в результате отдачи или присоединения электронов.

Если разность электроотрицательностей атомов велика, то электронная пара, осуществляющая связь, переходит к одному из атомов, и оба атома превращаются в ионы.

Химическая связь между ионами, осуществляемая за счет электростатического притяжения, называется ионной связью.

Водородная связь - зто связь между положительно заряженным атомом водорода одной молекулы и отрицательно заряженным атомом другой молекулы. Водородная связь имеет частично электростатический, частично донорно-акцепторный характер.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.