Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Реферат Звук и звуковые явления.doc
Скачиваний:
99
Добавлен:
21.12.2018
Размер:
1.24 Mб
Скачать

3. Звукозапись и фонограф Эдисона

Вряд ли сегодня можно встретить человека, Который ни разу бы не слышал радио, магнитофон или проигрыватель. Без звуко­записи наша жизнь кажется немыслимой. А ведь всего немного более века прошло с того времени, когда американский изобре­татель Эдисон в 1877 году впервые продемонстрировал изобре­тённый им фонограф - прибор для записи звука. В фонографе лёгкая мембрана воспринимала звук и передавала колебания на иглу, движущуюся вдоль вращающегося валика, покрытого воском. Колебания иглы оставляли на валике звуковую дорожку. Профиль дна этой дорожки в сущности есть развёртка или осциллограмма колебаний конца иглы. Когда игла вновь проходила по ней, из мембраны доносился записанный звук.

Изобретённый Эдисоном способ звукозаписи получил название механического способа. Используют его и сейчас, но, конечно, в новом качестве: мембрану, с её низкой чувствительностью заменили высокочувствительные микрофоны с электронными усилителями, а сигнал, преобразованный в механические колебания, записывают на металлической матрице, с которой затем печатают грампла­стинки. Запись ведут уже не иглой, а специальным резцом. Запись звука в виде борозды переменной глубины была заменена поперечной записью, то есть в виде борозды с поперечными извилинами. На современных пластинках звуковая дорожка имеет форму спирали, по которой при вращении пластинки движется игла, обычно от края пластинки к её центру. Извилины этой дорожки легко рассмотреть в сильное увеличительное стекло.

4. Звуколокация.

На явлении эхо основан метод определения расстояний до различных предметов и обнаружения их месторасположений. Допустим, что каким-нибудь источником звука испущен звуковой сигнал и зафиксирован момент его испускания. Звук встретил какое-то препятствие, отразился от него, вернулся и был принят приёмником звука. Если при этом был измерен промежуток времени между моментами испускания и приёма, то легко найти и расстояние до препятствия. За измеренное время t звук прошёл расстояние 2s, где s - это расстояние до препятствия, а 2s - расстояние от источника звука до препятствия и от препятствия до приёмника звука.

S = V*t/2

По этой формуле можно найти расстояние до отражателя сиг­нала. Но ведь надо ещё знать, где он находится, в каком направлении от источника сигнал встретил его. Между тем звук распространяется по всем направлениям, и отраженный сигнал мог прийти с разных сторон. Чтобы избежать этой трудности используют не обычный звук, а ультразвук.

Ультразвуковые волны по своей природе такие же, как обычные зву­ковые волны, но не воспринимаются человеком как звук. Это объясняется тем, что частота колебаний в них больше, чем 20 000 Гц. Такие волны наблюдаются в природе. Есть даже такие живые существа, способные их испускать и принимать. Ультра­звуковые волны и притом большой мощности можно создавать с помощью электрических и магнитных методов.

Главная особенность ультразвуковых волн состоит в том, что их можно сделать направленными, распространяющимися по определённому направлению от источника. Благодаря этому по отражению ультразвука можно не только найти расстояние, но и узнать, где находится тот предмет, который их отразил. Так можно, например, измерять глубину моря под кораблем.

Звуколокаторы позволяют об­наруживать и определять местоположение различных повреждений в изделиях, например пустоты, трещины, постороннего включения и др. В медицине ультразвук используют для обнаружения различных аномалий в теле больного - опухолей, искажений формы органов или их частей и т.д. Чем короче длина ультра­звуковой волны, тем меньше размеры обнаруживаемых деталей. Ультразвук используется также для лечения некоторых болезней.