- •Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования
- •Учебно-методический комплекс
- •1. Рабочая учебная программа дисциплины
- •1.1. Цели и задачи дисциплины
- •1.2. Структура и объем дисциплины Распределение фонда времени по семестрам, неделям, видам занятий
- •1.3. Содержание дисциплины Распределение фонда времени по темам и видам занятий
- •1.4. Требования к уровню освоения дисциплины и формы текущего и промежуточного контроля
- •Примерный перечень вопросов для подготовки к экзамену по дисциплине «Сети эвм и телекоммуникации»
- •1.5. Содержание самостоятельной работы
- •Распределение самостоятельной работы студентов по темам с указанием времени
- •Содержание каждого вида самостоятельной работы и вида контроля
- •2. Учебно-методическое пособие
- •2.1. Теоретические сведения
- •2.1.1. Введение
- •2.1.2.1. Эталонная модель osi
- •2.1.2.2. Аппаратура локальных сетей
- •2.1.2.3. Стандартные сетевые протоколы
- •2.1.2.4. Протоколы высоких уровней
- •2.1.2.5. Взаимодействие между стеками протоколов
- •2.1.2.6. Стандартные сетевые программные средства
- •2.1.2.7. Применение модели osi
- •2.1.2.8. Методы и технологии проектирования средств телекоммуникаций
- •2.1.3. Конфигурации локальных вычислительных сетей и методы доступа в них
- •2.1.3.1. Топология локальных сетей
- •2.1.3.2. Назначение пакетов и их структура
- •2.1.3.3. Методы управления обменом
- •2.1.3.4. Метод управления обменом csma/cd
- •2.1.3.5. Оценка производительности сети
- •2.1.3.6. Использование помехоустойчивых кодов для обнаружения ошибок в сети
- •2.1.4. Сети эвм с моноканалом и кольцевые. Проектирование сетей эвм по принципу «клиент-сервер»
- •2.1.4.1. Сети Ethernet и Fast Ethernet
- •2.1.4.2. Сеть Token-Ring
- •2.1.4.3. Сеть fddi
- •2.1.4.4. Сеть 100vg-Any lan
- •2.1.4.5. Сверхвысокоскоростные сети
- •2.1.4.6. Беспроводные сети
- •2.1.4.7. Стандартные сегменты семейства Ethernet
- •2.1.4.8. Стандартные сегменты Fast Ethernet
- •2.1.4.9. Автоматическое определение типа сети (Auto-Negotiation)
- •2.1.4.10. Производительность эвм и информационно-вычислительных сетей
- •2.1.4.11. Проектирование сетей эвм по принципу «клиент-сервер»
- •2.1.5. Конфигурации глобальных сетей и методы коммутации в них. Менеджмент в телекоммуникационных системах
- •2.1.5.1. Глобальные связи компьютерных сетей
- •2.1.5.2. Глобальные связи на основе выделенных каналов
- •2.1.5.3. Глобальные сети на основе коммутации каналов
- •2.1.5.4. Глобальные сети с коммутацией пакетов
- •2.1.6. Аппаратные средства телекоммуникации
- •2.1.6.1. Аппаратные средства локальных сетей
- •2.1.6.2. Аппаратные средства глобальных сетей
- •2.1.7. Составные и корпоративные сети
- •2.1.7.1. Принципы построения составных сетей
- •2.1.7.2. Алгоритмы и протоколы выбора маршрута
- •2.1.7.3. Иерархическая маршрутизация
- •2.1.7.4. Общие сведения о корпоративных сетях
- •2.1.7.5. Уровни и протоколы
- •2.1.7.6. Структура территориальных сетей
- •2.1.7.7. Адресация компьютеров в сети Интернет
- •2.1.7.8. Службы обмена данными
- •2.1.7.9. Сервисы сети Интернет
- •2.1.7.10. Виды конференц-связи
- •2.1.8. Программные средства телекоммуникации
- •2.1.8.1. Классификация операционных систем
- •2.1.8.2. Обобщенная структура операционных систем
- •2.1.8.3. Модель клиент-сервер и модель ос на базе микроядра
- •2.1.8.4. Топологии распределенных вычислений
- •2.1.8.5. Функции сетевых операционных систем
- •2.1.8.6. Распределенная обработка приложений
- •2.1.8.7. Адресация прикладных процессов в сетях эвм
- •2.1.8.8. Сетевые службы
- •2.1.9. Обеспечение безопасности телекоммуникационных связей и административный контроль. Проблемы секретности в сетях эвм и методы криптографии
- •2.1.9.1. Общие сведения и определения
- •2.1.9.2. Виды угроз информации
- •2.1.9.3. Классификация угроз безопасности и их нейтрализация
- •2.1.9.4. Методы и средства защиты информации в сетях. Программные средства защиты информации
- •2.1.9.5. Стандартные методы шифрования и криптографические системы
- •2.1.9.6. Администрирование сети
- •2.1.9.7. Безопасность в корпоративных сетях
- •2.1.9.8. Архивирование. Источники бесперебойного питания
- •2.1.10. Тенденции развития телекоммуникационных систем
- •2.3. Лабораторный практикум
- •Распределение тем лабораторных занятий по времени
- •2.3.1. Лабораторная работа № 1 Расчет конфигурации сети Ethernet
- •1.1. Критерии корректности конфигурации
- •1.2. Методика расчета времени двойного оборота и уменьшения межкадрового интервала
- •1.3. Пример расчета конфигурации сети
- •1.4. Задание на лабораторную работу
- •1.5. Справочные данные ieee
- •2.3.2. Лабораторная работа № 2 Изучение структуры ip-адреса
- •2.1. Типы адресов стека tcp/ip
- •2.2. Классы ip-адресов
- •2.3. Особые ip-адреса
- •2.4. Использование масок в ip-адресации
- •2.5. Задание на лабораторную работу
- •2.3.3. Лабораторная работа № 3 Взаимодействие прикладных программ с помощью транспортного протокола тср
- •3.1. Транспортный протокол tcp
- •3.2. Транспортный протокол udp
- •3.3. Порты, мультиплексирование и демультиплексирование
- •3.4. Логические соединения
- •3.5. Программирование обмена данными на основе транспортных протоколов
- •3.6 Пример реализации простейшего клиент-серверного приложения на основе сокетов
- •3.7. Задание на лабораторную работу
- •3.8. Справочные данные Основные свойства компонента ServerSocket:
- •2.3.4. Лабораторная работа № 4 Взаимодействие прикладных программ с помощью протоколов электронной почты smtp и pop3
- •4.1. Модель протокола, команды и коды ответов smtp
- •4.2. Кодировка сообщений
- •4.3. Процесс передачи сообщений
- •4.4. Пример последовательности команд почтовой транзакции
- •4.5. Модель протокола рор3, его назначение и стадии рор3-сессии
- •4.6. Формат сообщений
- •4.7. Процесс получения сообщений. Команды и ответы протокола рор3
- •4.8. Задание на лабораторную работу
- •4.9. Справочные данные
- •2.3.5. Лабораторная работа № 5 Взаимодействие прикладных программ с помощью протокола передачи данных ftp
- •5.1. Назначение и модели работы протокола ftp
- •5.2. Особенности управления процессом обмена данными
- •5.3. Команды и ответы протокола ftp
- •5.4. Задание на лабораторную работу
- •5.5. Справочные данные
- •2. Команды управления потоком данных.
- •3. Команды ftp-сервиса.
- •2.3.6. Лабораторная работа № 6 Построение и исследование компьютерных сетей с помощью системы NetCracker
- •6.1. Основы компьютерной системы NetCracker
- •6.2. Задание на лабораторную работу
- •2.3.7. Лабораторная работа № 7 Изучение алгоритма маршрутизации ospf
- •7.1. Алгоритмы маршрутизации
- •7.2. Задание на лабораторную работу
- •3. Учебно-методическое обеспечение дисциплины
- •3.1. Перечень основной и дополнительной литературы
- •3.1.1. Основная литература:
- •3.1.2. Дополнительная литература:
- •3.2. Методические рекомендации преподавателю
- •3.3. Методические указания студентам по изучению дисциплины
- •3.4. Методические указания и задания для выполнения курсовой работы
- •3.4.1. Постановка задачи курсовой работы. Обязательное содержание разделов
- •3.4.2. Выбор конфигурации сети Ethernet
- •3.4.3. Выбор конфигурации Fast Ethernet
- •3.4.4. Методика и начальные этапы проектирования сети
- •3.4.5. Выбор с учетом стоимости сети
- •3.4.6. Проектирование кабельной системы
- •3.4.7. Оптимизация и поиск неисправностей в работающей сети
- •3.4.8. Проектирование локальной корпоративной компьютерной сети с помощью системы автоматизированного проектирования NetWizard
- •3.4.9. Правила выполнения и оформления курсовой работы
- •Пример правильного оформления расчета
- •3.5. Учебно-методическая карта дисциплины
- •3.6. Материально-техническое обеспечение дисциплины
- •3.7. Программное обеспечение использования современных информационно-коммуникативных технологий
- •3.8. Технологическая карта дисциплины Поволжский государственный университет сервиса
- •Образец оформления титульного листа лабораторной работы
- •Образец оформления титульного листа журнала отчетов по лабораторным работам
- •Лист обложки пояснительной записки курсовой работы
- •Титульный лист пояснительной записки курсовой работы
- •Поволжский государственный университет сервиса
- •Задание по курсовому проектированию
- •Типовые варианты* задания на выполнение курсовой работы
2.1.9. Обеспечение безопасности телекоммуникационных связей и административный контроль. Проблемы секретности в сетях эвм и методы криптографии
2.1.9.1. Общие сведения и определения
Информационная безопасность сетей ЭВМ и телекоммуникаций в целом – одна из основных проблем XXI в., так как хищение, сознательное искажение и уничтожение информации могут привести к катастрофическим последствиям вплоть до человеческих жертв. Так, террористы, атаковавшие Всемирный торговый центр в Нью-Йорке и Пентагон в Вашингтоне в 2002 г. предварительно вывели из строя компьютерную систему управления безопасностью, тем самым разрушив систему информационного обеспечения безопасности США. Компьютерные коммерческие преступления приводят к потерям сотен миллионов долларов. Только в США за 1996–1999 гг. эти потери достигли 626 млн. долларов. Мировой годовой ущерб от несанкционированного доступа к информации составил в 1999 г. около 0,5 млрд. долларов. Ежегодно эта цифра увеличивается в полтора раза. Свыше 10 млрд. долларов составил ущерб, нанесенный вирусом «I love you», распространенным по электронной почте в 1999 г. К серьезным моральным потерям приводит хищение конфиденциальной информации.
Безопасность (security) информационно-вычислительной системы – это ее способность защитить данные от несанкционированного доступа с целью ее раскрытия, изменения или разрушения, т.е. обеспечить конфиденциальность и целостность информации.
Защита информации – это комплекс мероприятий, проводимых с целью предотвращения утечки, хищения, утраты, несанкционированного уничтожения, искажения, модификации (подделки), несанкционированного копирования, блокирования информации и т.п. Поскольку утрата информации может происходить по сугубо техническим, объективным и неумышленным причинам, под это определение подпадают также и мероприятия, связанные с повышением надежности сервера из-за отказов или сбоев в работе винчестеров, недостатков в используемом программном обеспечении и т.д.
Архитектура сети, включающая аппаратное обеспечение, является одним из факторов, влияющих на ее безопасность, т.е. некоторые виды сетей безопаснее других. Методы защиты сетей разного типа приведены далее в табл. 22.
Таблица 22
Методы управления безопасностью сетей
Архитектура сети |
Аутентификация |
Верификация |
Обеспечение целостности |
Ограничение доступа к центральному узлу, серверу, кабелям |
Управление работой сети и контроль этой работы |
Дополнительные меры |
С общей шиной |
+ |
+ |
+ |
|
|
|
Звездообразная |
|
|
+ |
+ |
+ |
Обеспечение резервных каналов |
Коммутируемая |
+ |
|
|
|
|
Криптозащита |
Неоднородная |
|
|
+ |
+ |
+ |
Защита данных на съемных носителях |
Локальная |
+ |
+ |
+ |
|
|
Закрытие проводов от прослушивания |
Ячеистая |
+ |
+ |
+ |
|
|
|
С коммутацией пакетов |
+ |
+ |
+ |
+ |
+ |
Криптозащита |
Кольцевая |
|
|
+ |
+ |
+ |
Обеспечение резервных каналов, криптозащита |
Следует заметить, что наряду с термином «защита информации» (применительно к компьютерным сетям) широко используется, как правило, в близком значении, термин «компьютерная безопасность».
Переход от работы на персональных компьютерах к работе в сети усложняет защиту информации по следующим причинам:
1. Большое число пользователей в сети и их переменный состав. Защита на уровне имени и пароля пользователя недостаточна для предотвращения входа в сеть посторонних лиц.
2. Значительная протяженность сети и наличие многих потенциальных каналов проникновения в сеть.
3. Уже отмеченные недостатки в аппаратном и программном обеспечении, которые зачастую обнаруживаются не на предпродажном этапе, называемом бета-тестированием, а в процессе эксплуатации. В том числе неидеальны встроенные средства защиты информации даже в таких известных и «мощных» сетевых ОС, как Windows NT или NetWare.
Остроту проблемы, связанной с большой протяженностью сети для одного из ее сегментов на коаксиальном кабеле, иллюстрирует рис. 157. В сети имеется много физических мест и каналов несанкционированного доступа к информации в сети. Каждое устройство в сети является потенциальным источником электромагнитного излучения из-за того, что соответствующие поля, особенно на высоких частотах, экранированы не идеально. Система заземления вместе с кабельной системой и сетью электропитания может служить каналом доступа к информации в сети, в том числе на участках, находящихся вне зоны контролируемого доступа и потому особенно уязвимых. Кроме электромагнитного излучения, потенциальную угрозу представляет бесконтактное электромагнитное воздействие на кабельную систему. Безусловно, в случае использования проводных соединений типа коаксиальных кабелей или витых пар, называемых часто медными кабелями, возможно и непосредственное физическое подключение к кабельной системе. Если пароли для входа в сеть стали известны или подобраны, становится возможным несанкционированный вход в сеть с файл-сервера или с одной из рабочих станций. Наконец, возможна утечка информации по каналам, находящимся вне сети:
• хранилище носителей информации;
• элементы строительных конструкций и окна помещений, которые образуют каналы утечки конфиденциальной информации за счет так называемого микрофонного эффекта;
• телефонные, радио-, а также иные проводные и беспроводные каналы (в том числе каналы мобильной связи).
Рис. 157. Места и каналы возможного несанкционированного доступа к информации в компьютерной сети |
Любые дополнительные соединения с другими сегментами или подключение к Интернету порождают новые проблемы. Атаки на локальную сеть через подключение к Интернету для того, чтобы получить доступ к конфиденциальной информации, в последнее время получили широкое распространение, что связано с недостатками встроенной системы зашиты информации в протоколах TCP/IP.
По мере развития ПЭВМ, увеличения их количества и доступности все больший размах приобретает информационное пиратство: несанкционированное копирование программных продуктов и данных, финансовые преступления с применением ЭВМ, компьютерные диверсии (вирусы, «логические бомбы», «черви», «троянские кони» и т.п.). Появление глобальных сетей, особенно сети Интернет, еще в большей степени стимулировало такое пиратство, значительно увеличив количество доступных пирату компьютеров за счет исключения необходимости физического доступа к ним и сделав сам процесс более увлекательным в силу его интерактивности.
Сформулировано три базовых принципа информационной безопасности, которая должна обеспечивать:
– целостность данных (защиту от сбоев, ведущих к потере информации, а также неавторизованного создания или уничтожения данных);
– конфиденциальность информации;
– доступность информации для всех авторизованных пользователей. В рамках комплексного рассмотрения вопросов обеспечения безопасности информации различают угрозы безопасности, службы безопасности (СБ) и механизмы реализации функций служб безопасности.