Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Energy.docx
Скачиваний:
4
Добавлен:
17.12.2018
Размер:
48.2 Кб
Скачать
  1. Equipartition of energy

The energy of a mechanical harmonic oscillator (a mass on a spring) is alternatively kinetic and potential. At two points in the oscillation cycle it is entirely kinetic, and alternatively at two other points it is entirely potential. Over the whole cycle, or over many cycles, net energy is thus equally split between kinetic and potential. This is called equipartition principle; total energy of a system with many degrees of freedom is equally split among all available degrees of freedom.

This principle is vitally important to understanding the behavior of a quantity closely related to energy, called entropy. Entropy is a measure of evenness of a distribution of energy between parts of a system. When an isolated system is given more degrees of freedom (i.e., given new available energy states that are the same as existing states), then total energy spreads over all available degrees equally without distinction between "new" and "old" degrees. This mathematical result is called the second law of thermodynamics.

  1. Oscillators, phonons, and photons

This section may contain original research. Please improve it by verifying the claims made and adding references. Statements consisting only of original research may be removed. More details may be available on the talk page. (August 2009)

In an ensemble (connected collection) of unsynchronized oscillators, the average energy is spread equally between kinetic and potential types.

In a solid, thermal energy (often referred to loosely as heat content) can be accurately described by an ensemble of thermal phonons that act as mechanical oscillators. In this model, thermal energy is equally kinetic and potential.

In an ideal gas, the interaction potential between particles is essentially the delta function which stores no energy: thus, all of the thermal energy is kinetic.

Because an electric oscillator (LC circuit) is analogous to a mechanical oscillator, its energy must be, on average, equally kinetic and potential. It is entirely arbitrary whether the magnetic energy is considered kinetic and whether the electric energy is considered potential, or vice versa. That is, either the inductor is analogous to the mass while the capacitor is analogous to the spring, or vice versa.

1. By extension of the previous line of thought, in free space the electromagnetic field can be considered an ensemble of oscillators, meaning that radiation energy can be considered equally potential and kinetic. This model is useful, for example, when the electromagnetic Lagrangian is of primary interest and is interpreted in terms of potential and kinetic energy.

2. On the other hand, in the key equation m2c4 = E2 − p2c2, the contribution mc2 is called the rest energy, and all other contributions to the energy are called kinetic energy. For a particle that has mass, this implies that the kinetic energy is 0.5p2 / m at speeds much smaller than c, as can be proved by writing E = mc2 √(1 + p2m − 2c − 2) and expanding the square root to lowest order. By this line of reasoning, the energy of a photon is entirely kinetic, because the photon is massless and has no rest energy. This expression is useful, for example, when the energy-versus-momentum relationship is of primary interest.

The two analyses are entirely consistent. The electric and magnetic degrees of freedom in item 1 are transverse to the direction of motion, while the speed in item 2 is along the direction of motion. For non-relativistic particles these two notions of potential versus kinetic energy are numerically equal, so the ambiguity is harmless, but not so for relativistic particles.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]