Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Energy.docx
Скачиваний:
4
Добавлен:
17.12.2018
Размер:
48.2 Кб
Скачать
  1. Applications of the concept of energy

Energy is subject to a strict global conservation law; that is, whenever one measures (or calculates) the total energy of a system of particles whose interactions do not depend explicitly on time, it is found that the total energy of the system always remains constant.[13]

The total energy of a system can be subdivided and classified in various ways. For example, it is sometimes convenient to distinguish potential energy (which is a function of coordinates only) from kinetic energy (which is a function of coordinate time derivatives only). It may also be convenient to distinguish gravitational energy, electric energy, thermal energy, and other forms. These classifications overlap; for instance, thermal energy usually consists partly of kinetic and partly of potential energy.

The transfer of energy can take various forms; familiar examples include work, heat flow, and advection, as discussed below.

The word "energy" is also used outside of physics in many ways, which can lead to ambiguity and inconsistency. The vernacular terminology is not consistent with technical terminology. For example, while energy is always conserved (in the sense that the total energy does not change despite energy transformations), energy can be converted into a form, e.g., thermal energy, that cannot be utilized to perform work. When one talks about "conserving energy by driving less," one talks about conserving fossil fuels and preventing useful energy from being lost as heat. This usage of "conserve" differs from that of the law of conservation of energy.[11]

In classical physics energy is considered a scalar quantity, the canonical conjugate to time. In special relativity energy is also a scalar (although not a Lorentz scalar but a time component of the energy-momentum 4-vector).[14] In other words, energy is invariant with respect to rotations of space, but not invariant with respect to rotations of space-time (= boosts).

  1. Energy transfer

Because energy is strictly conserved and is also locally conserved (wherever it can be defined), it is important to remember that by the definition of energy the transfer of energy between the "system" and adjacent regions is work. A familiar example is mechanical work. In simple cases this is written as the following equation:

ΔE = W

if there are no other energy-transfer processes involved. Here E is the amount of energy transferred, and W represents the work done on the system.

More generally, the energy transfer can be split into two categories:

ΔE = W + Q

where Q represents the heat flow into the system.

There are other ways in which an open system can gain or lose energy. In chemical systems, energy can be added to a system by means of adding substances with different chemical potentials, which potentials are then extracted (both of these process are illustrated by fueling an auto, a system which gains in energy thereby, without addition of either work or heat). Winding a clock would be adding energy to a mechanical system. These terms may be added to the above equation, or they can generally be subsumed into a quantity called "energy addition term E" which refers to any type of energy carried over the surface of a control volume or system volume. Examples may be seen above, and many others can be imagined (for example, the kinetic energy of a stream of particles entering a system, or energy from a laser beam adds to system energy, without either being either work-done or heat-added, in the classic senses).

ΔE = W + Q + E

Where E in this general equation represents other additional advected energy terms not covered by work done on a system, or heat added to it.

Energy is also transferred from potential energy (Ep) to kinetic energy (Ek) and then back to potential energy constantly. This is referred to as conservation of energy. In this closed system, energy cannot be created or destroyed; therefore, the initial energy and the final energy will be equal to each other. This can be demonstrated by the following:

Epi + Eki = EpF + EkF

The equation can then be simplified further since Ep = mgh (mass times acceleration due to gravity times the height) and (half mass times velocity squared). Then the total amount of energy can be found by adding Ep + Ek = Etotal.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]