Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Плоскость в пространстве.doc
Скачиваний:
1
Добавлен:
16.12.2018
Размер:
433.66 Кб
Скачать

Неполные уравнения плоскости.

Общее уравнение прямой называется полным, если все его коэффициенты не равны 0. в противном случае уравнение называется неполным.

  1. D=0 Ax+Ву+Сz=0 – плоскость, проходящая через начало координат.

Остальные случаи определяются положением нормального вектора n={А;В;С}.

  1. А=0 Ву+Сz+D=0 – уравнение плоскости, параллельной оси Ох. (Т.к. нормальный вектор n={0;В;С} перпендикулярен оси Ох).

  2. В=0 Ах+Сz+D=0 - уравнение плоскости, параллельной оси Оу. (Т.к. нормальный вектор n={А;0;С} перпендикулярен оси Оy).

  3. С=0 Ах+Ву+D=0 - уравнение плоскости, параллельной оси Оz. (Т.к. нормальный вектор n={А;B;0} перпендикулярен оси Оz).

  4. А=В=0 Сz+D=0 – z=-D/C уравнение плоскости, параллельной плоскости Оху (т.к. эта плоскость параллельна осям Ох и Оу).

  5. А=С=0 Ву+D=0 - у=-D/В- уравнение плоскости, параллельной плоскости Охz (т.к. эта плоскость параллельна осям Ох и Оz).

  6. В=С=0 Ах+D=0 – x=-D/A- уравнение плоскости, параллельной плоскости Оуz (т.к. эта плоскость параллельна осям Оу и Оz).

  7. A=D=0 By+Cz=0 - уравнение плоскости, проходящей через ось Ох.

  8. B=D=0 Ax+Cz=0 - уравнение плоскости, проходящей через ось Оy.

  9. A=B=D=0 Cz=0 (z=0) – координатная плоскость Оху. (т.к. эта плоскость параллельна Оху и проходит через начало координат).

  10. А=С=D=0 By=0 (y=0) – координатная плоскость Охz. (т.к. эта плоскость параллельна Охz и проходит через начало координат).

  11. B=C=D=0 Ax=0 (x=0) – координатная плоскость Оуz. (т.к. эта плоскость параллельна Оуz и проходит через начало координат).

Уравнение плоскости, проходящей через три заданные точки.

Выведем уравнение плоскости, проходящей через 3 различные точки М111;z1), М222;z2), М333;z3), не лежащие на одной прямой. Тогда векторы М1М2=(х2121;z2-z1) и М1М3=(х3131;z3-z1) не коллинеарны. Поэтому точка М(х,у,z) лежит в одной плоскости с точками М1, М2 и М3 тогда и только тогда, когда векторы М1М2, М1М3 и М1М=(х-х1;у-у1;z-z1) - компланарны, т.е. , когда их смешанное произведение равно 0

(М1М· М1М2· М1М3=0), т.е.

(4) Уравнение плоскости, проходящей через 3 заданные точки.

(Разложив определитель по 1-й строке и упростив получим общее уравнение плоскости: Ах+Ву+Сz+D=0).

Т.о. три точки однозначно определяют плоскость.

Уравнение плоскости в отрезках на осях.

Плоскость Π пересекает оси координат в точках М1(а;0;0), М2(0;b;0), M3(0;0;c).

М(х;у;z)- переменная точка плоскости.

Векторы

М1М=(х-а;у;z)

М1М2=(0-а;b;0) определяют данную плоскость

М1М3=(-a;0;c)

Т.е. М1М· М1М2· М1М3=0

Разложим по 1-й строке: (х-а)bc-y(-ac)+zab=xbc-abc+yac+zab=0

Разделим равенство на abc≠0. Получим:

(5) уравнение плоскости в отрезках на осях.

Уравнение (5) можно получить из общего уравнения плоскости, предполагая, что D≠0, разделим на D

Ax+By+Cz+D=0

Ax+By+Cz=-D

Обозначив –D/A=a, -D/B=b, -C/D=c – получим уравнение 4.

Угол между двумя плоскостями. Условия параллельности и перпендикулярности плоскостей.

Угол φ между двумя плоскостями α1 и α2 измеряется плоским углом между 2 лучами, перпендикулярными прямой, по которой эти плоскости пересекаются. Любые две пересекающиеся плоскости образуют два угла, в сумме равных . Достаточно определить один из этих углов.

Пусть плоскости заданы общими уравнениями:

1: A1x+B1y+C1z+D1=0

2: A2x+B2y+C2z+D2=0

Нормальные векторы этих плоскостей: n1={A1;B1;C1}, n2={A2;B2;C2}.

Тогда искомый угол φ можно определить как угол между нормальными векторами n1 и n2, следовательно:

сosφ=, т.е. сosφ= (6)

  1. Если плоскости α1||α2, то и нормальные векторы n1||n2. Следовательно, условие параллельности плоскостей: (7)

При этом, если , то плоскости совпадают.

2) Если плоскости α1α2, то и нормальные векторы n1n2. Следовательно, условие перпендикулярности плоскостей: А1А21В21С2=0 (8).

Пример. Составить уравнение плоскости, проходящей через точку М(-1;3;1) параллельно плоскости 2х-3у+4z-5=0.

Т.к. α1||α2, то в качестве нормального вектора искомой плоскости возьмем вектор n1=(2;-3;4). Параметр D найдем, подставив в уравнение 2х-3у+4z +D=0 координаты точки М.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.