Добавил:
linker.pp.ua Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Антенны, СВЧ / OC / Broadband microstrip antennas

.pdf
Скачиваний:
220
Добавлен:
15.12.2018
Размер:
6.46 Mб
Скачать

356

Broadband Microstrip Antennas

[45]Targonski, S. D., and D. M. Pozar, ‘‘Design of Wideband Circularly Polarized Aperture Coupled Microstrip Antennas,’’ IEEE Trans. Antennas Propagation, Vol. 41, No. 2, 1993, pp. 214–220.

[46]Pozar, D. M., and S. M. Duffy, ‘‘A Dual-Band Circularly Polarized Aperture-Coupled Stacked Microstrip Antenna for Global Positioning Satellite,’’ IEEE Trans. Antennas Propagation, Vol. 45, No. 11, 1997, pp. 1618–1625.

[47]Aksun, M. I., S. L. Chuang, and Y. T. Lo, ‘‘On Slot-Coupled Microstrip Antennas and Their Applications for Circular Polarization Operation,’’ IEEE Trans. Antennas Propagation, Vol. AP-38, 1990, pp. 1224–1230.

[48]Huang, C. Y., C. Y. Wu, and K. L. Wong, ‘‘Slot-Coupled Microstrip Antenna for

Broadband Circular Polarization,’’ Electronic Letters, Vol. 34, No. 9, 1998,

pp. 835–836.

[49]Pozar, D. M., and D. H Schaubert, Microstrip Antennas: The Analysis and Design of Microstrip Antennas and Arrays, New York: IEEE Press, 1995.

[50]Teshirogi, T., M. Tanaka, and W. Chujo, ‘‘Wideband Circularly Polarized Antenna

with Sequential Rotations and Phase Shift of Elements,’’ Proc. ISAP, 1985,

pp.117–120.

[51]Morrow, I., and J. R. James, ‘‘Sequentially Rotated Large Bandwidth Circularly Polarized Printed Antennas,’’ Electronics Letters, Vol. 31, No. 24, 1995, pp. 2062–2064.

[52]Lo, W. K., C. H. Chan, and K. M. Luk, ‘‘Circularly Polarized Microstrip Antenna Array Using Proximity Coupled Feed,’’ Electronics Letters, Vol. 34, No. 23, 1998,

pp.2190–2191.

[53]Huang, J., ‘‘A Technique for an Array to Generate Circular Polarization with Linear Polarized Elements,’’ IEEE Trans. Antennas Propagation, Vol. AP-34, No. 9, 1986,

pp.1113–1123.

[54]Iwasaki, H., T. Nakajima, and Y. Suzuki, ‘‘Gain Improvement of Circularly Polarized Array Antenna Using Linearly Polarized Elements,’’ IEEE Trans. Antennas Propagation, Vol. 43, No. 6, 1995, pp. 604–608.

[55]Gupta, K. C., and A. Benalla, Microstrip Antenna Design, Norwood, MA: Artech House, 1988.

[56]Wood, C., ‘‘Curved Microstrip Lines as Compact Wideband Circularly Polarized Antennas,’’ IEE Proc. Microwaves, Antennas Propagation, Pt. H, Vol. 3, 1979,

pp.5–13.

[57]Ito, K., and H. Kogo, ‘‘Improved Design of Series Fed Circularly Polarized Printed Linear Antennas,’’ IEE Proc. Microwaves, Antennas Propagation, Pt. H, Vol. 133, 1986,

pp.462–466.

[58]Nishimura, S., Y. Sugio, and T. Makimoto, ‘‘Crank Type Circularly Polarized Microstrip Antenna,’’ IEEE AP-S Int. Symp. Digest, 1983, pp. 162–165.

[59]Roederer, A. G., ‘‘A Cross Antenna: A New Low Profile Circularly Polarized Radiator,’’

IEEE Trans. Antennas Propagation, Vol. 38, No. 5, 1990, pp. 704–710.

9

Broadband Planar Monopole

Antennas

9.1 Introduction

Chapters 1–8 have observed that the BW of the MSA increases with an increase in the substrate thickness and a decrease in the dielectric constant of the substrate. For a thick substrate with a low dielectric constant, a BW of 5% to 10% is obtained. Further increase in the substrate thickness decreases the efficiency of the MSA and increases cross-polar levels as described in Chapter 2. Also, a long coaxial probe is required to feed the radiating metallic patch suspended in air at a large height h as shown in Figure 9.1(a). The large h increases the probe inductance, and the input impedance becomes too inductive to obtain impedance matching. This large inductive input impedance can be taken care of by feeding the patch with a shorter probe of length p as shown in Figure 9.1(b). In this case, the patch is fed along the periphery and an additional perpendicular ground plane is required. If h is very large, the bottom ground plane would have a negligible effect and hence can be removed. This configuration becomes similar to that of a planar monopole antenna, as shown in Figure 9.1(c) [1–4].

The planar disc monopole antennas yield a very large-impedance BW, which can be explained in the following two ways:

1.A monopole antenna generally consists of a thin vertical wire mounted over the ground plane, whose BW increases with an

357

358

 

 

 

 

 

 

 

 

 

 

Broadband Microstrip Antennas

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.1 (a) MSA suspended in air, (b) modified MSA with side feed, and (c) planar monopole antenna.

increase in its diameter [5]. A planar monopole antenna can be equated to a cylindrical monopole antenna with a large effective diameter.

2.The planar monopole antenna can be viewed as a MSA on a very

thick substrate with er = 1, so a large BW is expected. In the radiating metallic patch, various higher order modes will get excited. Since all the modes will have a larger BW, these will undergo a smaller impedance variation. The shape and size of these planar antennas can be optimized to bring several modes within the VSWR = 2 circle in the Smith chart, leading to very large-impedance BW.

This chapter describes various planar monopole antennas, including square, rectangular, triangular, hexagonal, circular, and elliptical disc monopoles.

Broadband Planar Monopole Antennas

359

9.2 Planar Rectangular and Square Monopole Antennas

A planar rectangular monopole antenna can be thought of as a variation of the RMSA, in which the horizontal ground plane is considered to be located at infinity. The following discussions bring out this analogy.

9.2.1 RMSA Suspended in Air with Orthogonal Ground Plane

The side and the front views of a rectangular radiating patch with L = W = 12 cm made of a copper plate of thickness 0.1 cm with two orthogonal ground planes are shown in Figure 9.2(a, b). The patch is fed with a 50-V SMA connector of probe length p through a fixed ground plane and the orthogonal ground plane is moveable. For the moveable ground plane spacing h = 3 cm from the radiating patch and the probe length p = 0.4 cm, the measured input impedance and VSWR plots are shown in Figure 9.2(c, d). Multiple loops occur due to the excitation of various higher order modes of RMSA. The impedance plot shows less inductive shift due to the smaller value of the feed probe length p, so the value of p is increased to 1 cm to shift the impedance plot in the clockwise direction. The results are summarized in Table 9.1. The measured BW for VSWR 2 is from 858 MHz to 988 MHz.

For analysis purpose, this structure can be thought of as an MSA on an air dielectric with an additional perpendicular ground plane. The analytical methods valid for MSAs could be applied to this configuration with suitable modifications.

The formula for RMSA is used to calculate the resonance frequency of this antenna. Since the dielectric medium for all the cases under consideration is air, the effective dielectric constant ee is equal to 1. The theoretical resonance frequency for the fundamental mode can be calculated using (2.9).

f 0 = c /(2L e )

(9.1)

where:

L e = effective resonant length;

c = velocity of light in free space.

For two orthogonal ground planes, L e . L + DL + p, because the extension of length DL due to the fringing fields is applicable only for one side, and on the other side, it is restricted to p due to the orthogonal ground

360

 

 

 

 

 

 

 

 

 

Broadband Microstrip Antennas

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.2 (a) Side and (b) front views of modified RMSA with orthogonal ground planes. Measured (c) input impedance and (d) VSWR plots.

plane. For a large width of the patch (W /h > 10) with er = 1, DL is approximately equal to h. The theoretical resonance frequency, calculated using (9.1) for p = 1.0 cm, is 937 MHz, which is close to the measured center frequency of 923 MHz.

Next, the effect of increasing h on BW of the antenna is considered. For different values of h with p = 1.0 cm, the measured lower and upper frequencies ( f L and f H ) corresponding to VSWR = 2 are given in Table 9.1. With an increase in h from 3 cm to infinity (∞), the percentage BW

Broadband Planar Monopole Antennas

361

Table 9.1

Resonance Frequency and Percentage BW of RMSA with L = W = 12 cm for Different Values of h

 

Measured Results for VSWR 2

Theoretical

h

Frequency

(cm)

f L (MHz)

f H (MHz)

% BW

(MHz)

3

858

988

14.1

937a

6

752

934

17.7

789a

18

515

1,081

70.3

484a, 483b

501

1,154

81.2

0a, 483b

aCalculated using (9.1). bCalculated using (9.8).

of the antenna increases from 14.1% to 81.2%. As h increases, the measured lower resonance frequency decreases because of the increase in DL due to the large fringing fields. For smaller values of h, there is a reasonable agreement between the theoretical frequency obtained from (9.1) and the measured center frequency. As h increases, the theoretical frequency is close to the measured lower frequency corresponding to VSWR = 2.

For two different values of h [i.e., 18 cm (large) and (bottom ground plane removed)], the measured input impedance and VSWR plots are shown in Figure 9.3. As h increases from 18 cm to the measured lower frequency decreases slightly from 515 MHz to 501 MHz. For these two values of h,

Figure 9.3 Measured (a) input impedance and (b) VSWR plots of RMSA for two values of h : ( - - - ) 18 cm and ( —— ) .

362

Broadband Microstrip Antennas

the input impedance and VSWR plots are nearly the same. Therefore, for a large h tending to infinity, the MSA configuration reduces to that of a planar monopole antenna. In this case, the approximate lower frequency corresponding to VSWR = 2 can be determined by using the monopole antenna concept described in Section 9.2.2.

9.2.2Calculation of the Lower Frequency of the Planar Monopole Antennas

For a planar monopole antenna, the lower frequency corresponding to VSWR = 2 can be approximately calculated by equating its area (in this case, a rectangular disc monopole) to that of an equivalent cylindrical monopole antenna of same height L and equivalent radius r, as described below [3, 4]:

2prL = WL

(9.2)

which gives

 

r = W /(2p)

(9.3)

The input impedance of a l /4 monopole antenna is half of that of the l /2 dipole antenna. Thus, the input impedance of an infinitesimally thin monopole antenna is 36.5 + j 21.25V, which is inductive. The real input impedance is obtained when a slightly smaller length of the monopole

is used as given by [5]:

 

L = 0.24lF

(9.4)

where

 

F = (L /r ) / (1 + L /r ) = L / (L + r )

(9.5)

From (9.4) and (9.5), the wavelength l is obtained as:

 

l = (L + r )/0.24

(9.6)

Therefore, the lower frequency f L is given by:

 

f L = c /l = (30 × 0.24) / (L + r ) = 7.2 / (L + r ) GHz

(9.7)

Broadband Planar Monopole Antennas

363

Equation (9.7) does not account for the effect of the probe length p, which increases the total length of the antenna thereby reducing the frequency. Accordingly, this equation is modified to

f L = 7.2 / (L + r + p ) GHz

(9.8)

where L , r, and p are in centimeters.

The theoretical frequency of 483 MHz for h = (monopole antenna) obtained using (9.8) is close to the measured f L of 501 MHz. For h = 18 cm, the theoretical frequencies obtained using the MSA and monopole concepts are very close to each other.

Thus, an interesting transition in antenna characteristics (with respect to resonance frequency) is observed, as the ground plane spacing h is increased. For a smaller h, the measured resonance frequency is close to the theoretical frequency determined by the expressions applicable to the MSA and for a larger h, it is close to the frequency obtained using expressions for a monopole antenna.

9.2.3Effect of Various Parameters of Planar Rectangular Monopole Antennas

The previous section observed that the planar rectangular monopole (RM) antenna yields a large impedance BW [3, 4]. The BW of these antennas depends mainly on the width W of the plate, the diameter d of the feeding probe, and the length of the probe p. The SMA connector is generally used above 1 GHz for feeding the antenna, and hence, d is kept fixed at 0.12 cm. When the height L of the monopole antenna increases (or decreases), the lower edge frequency decreases (or increases), which is quite obvious. Therefore, the effects of width W and probe length p on the performance of the antenna are described.

The RM and square monopole (SM) antennas are analyzed using IE3D software [6]. Initially, the effect of p is described by keeping L = W = 4.5 cm. The input impedance and VSWR plots for two values of p are shown in Figure 9.4(a, b). As p is increased from 0.05 cm to 0.2 cm, the input impedance plot shifts up in the clockwise direction. This is because with an increase in p, the probe inductance increases and therefore the input impedance becomes more inductive. A broad BW of 1,335 MHz (68%) is obtained for p = 0.2 cm, compared to the BW of 668 MHz (40%) for p = 0.05 cm.

364

Broadband Microstrip Antennas

Figure 9.4 (a) Input impedance and (b) VSWR plots of RM antenna for two values of p [( —— ) 0.05 cm and ( - - - ) 0.2 cm]; (c) input impedance and (d) VSWR plots with L = 4.5 cm and p = 0.2 cm for two values of W [( - - - ) 4.5 cm and ( —— ) 3.5 cm].

Next, the effect of W is described by keeping other parameters fixed. The input impedance and VSWR plots for two values of W (4.5 cm and 3.5 cm) with L = 4.5 cm and p = 0.2 cm are shown in Figure 9.4(c, d). With a decrease in W, the size of the loop in the impedance plot increases and the plot shifts toward the right in the Smith chart. Since the lengths of these RMs are kept fixed at 4.5 cm, the lower band-edge frequency remains almost unchanged; this is predominantly determined by the length L of the planar monopole antenna. As W decreases from 4.5 cm to 3.5 cm, the BW increases from 1,335 MHz to 1,715 MHz due to an increase in loop size.

Broadband Planar Monopole Antennas

365

9.2.4 Radiation Pattern of RM Antennas

The theoretical radiation pattern of the square monopole antenna (L = W = 4.5 cm) is obtained using IE3D for infinite ground plane [6]. For comparison, the radiation pattern of a thin (narrow width W = 0.5 cm) RM antenna with the same length L = 4.5 cm is also computed in the same frequency range. The E- and H-plane radiation patterns of both the antennas at 1.5 GHz and 2.5 GHz are shown in Figure 9.5. These two frequencies are

Figure 9.5 Radiation patterns of the two monopole antennas at 1.5 GHz (a) E-plane and

(b) H-plane. Radiation patterns at 2.5 GHz and the (c) E-plane and (d) H-plane. [( - - - ) Thin RM and ( —— ) SM].

Соседние файлы в папке OC