Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shpory_biologia_1.doc
Скачиваний:
17
Добавлен:
10.12.2018
Размер:
193.54 Кб
Скачать

Билет № 7

  1. Хромосомный механизм наследования пола. Цитогенетические методы определения пола. Наследование, сцепленное с полом. Примеры.

2. Пол характеризуется комплексом признаков, определяемых генами, расположенными в хромосомах. У видов с раздельнополыми особями хромосомный комплекс самцов и самок неодинаков, цитологически они отличаются по одной паре хромосом, ее назвали половыми хромосомами. Одинаковые хромосомы этой пары назвали X(икс)- хромосомами. Непарную, отсутствующую у другого пола- Y (игрек)- хромосомой; остальные, по которым нет различий аутосомами (А). У человека 23 пары хромосом. Из них 22 пары аутосом и 1 пара половых хромосом. Пол с одинаковыми хромосомами XX, образующий один тип гамет (с X- хромосомой), называют гомогаметным, другой пол, с разными хромосомами XY, образующий два типа гамет (с X-хромосомой и с Y-хромосомой), - гетерогаметным. У человека, млекопитающих и других организмов гетерогаметный пол мужской; у птиц, бабочек - женский.

X- хромосомы, помимо генов, определяющих женский пол, содержат гены, не имеющие отношения к полу. Признаки, определяемые хромосомами, называются признаками, сцепленными с полом. У человека такими признаками являются дальтонизм (цветная слепота) и гемофилия (несвертываемость крови). Эти аномалии рецессивны, у женщин такие признаки не проявляются, если даже эти гены несет одна из X- хромосом; такая женщина является носительницей и передает их с Х – хромосомой своим сыновьям.

Цитогенетический метод определения пола. Он основан на микроскопическом изучении хромосом в клетках человека. Применение цито генетического метода позволяет не только изучать нормальную морфологию хромосом и кариотипа в целом, определять генетический пол организма, но, главное, диагностировать различные хромосомные болезни, связанные с изменением числа хромосом или с нарушением их структуры. В качестве экспресс- метода, выявляющего изменение числа половых хромосом, используют метод определения полового хроматина в неделящихся клетках слизистой оболочки щеки. Половой хроматин, или тельце Барра, образуется в клетках женского организма одной из двух Х- хромосом. При увеличении количества Х – хромосом в кариотипе организма в его клетках образуются тельца Барра в количестве на единицу меньше числа хромосом. При уменьшении числа хромосом тельце отсутствует. В мужском кариотипе Y- хромосома может быть обнаружена по более интенсивной люмисценции по сравнению с другими хромосомами при обработке их акрихинипритом и изучении в ультрафиолетовом свете.

Билет № 10

1. Кодирование и реализация биологической информации в клетке. Кодовая система днк и белка.

1. Первично все многообразие жизни обусловливается разнообразием белковых молекул, выполняющих в клетках различные биологические функции. Структура белков определяется набором и порядком расположения аминокислот в их пептидных цепях. Именно эта последовательность аминокислот в пептидных цепях зашифрована в молекулах ДНК с помощью биологического (генетического) кода. Для шифровки 20 различных аминокислот достаточное количество сочетаний нуклеотидов может обеспечить лишь триплетный код, в котором каждая аминокислота шифруется тремя стоящими рядом нуклеотидами.

Генетический код – это система записи информации о последовательности расположения аминокислот в белках с помощью последовательного расположения нуклеотидов в и-РНК.

Св-ва ген. кода:

1) Код триплетен. Это означает, что каждая из 20 аминокислот зашифрована последовательностью 3 нуклеотидов, называется триплетом или кодоном.

2) Код вырожден. Это означает, что каждая аминокислота шифруется более чем одним кодоном (исключение метиотин и триптофан)

3) Код однозначен – каждый кодон шифрует только 1 аминоксилоту

4) Между генами имеются «знаки препинания» (УАА,УАГ,УГА) каждый из которых означает прекращение синтеза и стоит в конце каждого гена.

5) Внутри гена нет знаков препинания.

6) Код универсален. Генетический код един для всех живых на земле существ.

Транскрипция – это процесс считывания информации РНК, осуществляемой и-РНК полимеразой. ДНК – носитель всей генетической информации в клетке, непосредственного участия в синтезе белков не принимает. К рибосомам – местам сборки белков – высылается из ядра несущий информационный посредник, способный пройти поры ядерной мембраны. Им является и-РНК. По принципу комплементарности она считывает с ДНК при участии фермента называемого РНК – полимеразой. В процессе транскрипции можно выделить 4 стадии:

1) Связывание РНК-полимеразы с промотором,

2) инициация – начало синтеза. Оно заключается в образовании первой фосфодиэфирной связи между АТФ и ГТФ и два нуклеотидом синтезирующей молекулы и-РНК,

3) элонгация – рост цепи РНК, т.е. последовательное присоединение нуклеотидов друг к другу в том порядке, в котором стоят комплементарные нуклеотиды в транскрибируемой ните ДНК,

4) Терминация – завершения синтеза и-РНК. Промотр – площадка для РНК-полимеразы. Оперон – часть одного гена ДНК.

ДНК (дезоксирибонуклеиновая кислота) – биологический полимер, состоящий из двух полинуклеотидных цепей, соединенных друг с другом. Мономеры, составляющие каждую из цепей ДНК, представляют собой сложные органические соединения, включающие одно из четырех азотистых оснований: аденин (А) или тимин (Т), цитозин (Ц) или гуанин (Г), пятиатомный сахар пентозу – дезоксирибозу, по имени которой получила название и сама ДНК, а также остаток фосфорной кислоты. Эти соединения носят название нуклеотидов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]