- •Лекция 1 Магнитное поле Введение
- •Постоянные магниты
- •Магнитное действие тока
- •Индукция магнитного поля
- •Картины силовых линий
- •Домашнее задание
- •Леция 2 Действие магнитного поля на проводник с током
- •Частные случаи:
- •Действие магнитного поля на движущийся заряд
- •Вывод формулы для модуля силы Лоренца
- •Работа силы Лоренца
- •Движение заряженной частицы в магнитном поле
- •Период обращения частицы в магнитном поле
- •Частица влетает в магнитное поле под углом к силовым линиям
- •Частица влетает в магнитное поле параллельно силовым линиям
- •Домашнее задание
- •Лекция 3 Магнитные свойства вещества
- •Домашнее задание:
- •Электромагнетизм Магнитный поток
- •Явление электромагнитной индукции
- •3. Контур выдвигается из поля
- •Домашнее задание
- •Лекция 4 Направление индукционного тока.
- •Закон электромагнитной индукции (закон Фарадея)
- •Эдс индукции движущегося проводника
- •Самоиндукция. Индуктивность
- •Закон Фарадея для самоиндукции
- •Энергия магнитного поля
- •Переменный ток Лекция 5 Введение. Немного математики
- •Производные
- •Вращение рамки в однородном магнитном поле
- •Произвольная начальная фаза – рамка расположена под произвольным углом к силовым линиям.
- •Что такое фаза гармонических колебаний?
- •Элементы цепи переменного тока
- •Резистор в цепи постоянного тока
- •Резистор в цепи переменного тока
- •Мощность на резисторе в цепи переменного тока
- •Лекция 6 Конденсатор в цепи переменного тока
- •Емкостное сопротивление
- •Катушка индуктивности в цепи переменного тока
- •Мощность в цепи переменного тока
- •Лекция 7 Полная цепь переменного тока
- •Свободные и вынужденные колебания
- •Резонанс в электрической цепи
- •Трансформаторы
- •Принцип работы
- •Холостой ход (разомкнутая вторичная обмотка)
- •Нагруженный трансформатор (замкнутая вторичная обмотка)
- •Вопрос 1 Можно ли включать трансформатор в цепь постоянного тока? Почему?
- •Вопрос 2. Сколько может быть у трансформатора первичных обмоток? вторичных?
- •Метод векторных диаграмм. Закон Ома для цепи переменного тока
- •Передача электроэнергии
- •Свободные электромагнитные колебания
- •Превращения энергии в колебательном контуре
- •Лекция 8 электромагнитные волны Идеи теории Максвелла
- •Свойства электромагнитных волн
- •Излучение и прием электромагнитных волн.
- •Принципы радиосвязи
- •Шкала электромагнитных волн
- •Волновая оптика
- •Дифракция света. Дифракционная решетка.
- •Особенность обозначений:
- •Падение смешанного излучения на дифракционную решетку
- •Лекция 9 Геометрическая оптика. Законы геометрической оптики Законы отражения и преломления света. Показатель преломления.
- •Законы преломления света:
- •Полное внутреннее отражение
- •Ход лучей в призме
- •Построение изображения в плоском зеркале
- •Обозначения на схемах:
- •Ход лучей в линзах
- •Построение изображений в линзах
- •Формула линзы
- •Лекция 10 Элементы специальной теории относительности Введение
- •Постулаты сто
- •Относительность промежутков времени:
- •Относительность расстояний
- •Относительность одновременности
- •Принцип соответствия
- •Элементы релятивистской динамики
- •Квантовая физика Квантовая гипотеза Планка:
- •Свойства фотонов:
- •Фотоэффект
- •Законы Столетова для фотоэффекта
- •Спектр атома водорода
- •Излучение Солнца
- •Строение атома
- •Опыты Резерфорда
- •Неустойчивость атома Резерфорда
- •Постулаты Бора
- •Объяснение закономерностей линейчатых спектров
- •Объяснение спектра атома водорода
- •Лекция 12 Физика атомного ядра Элементарные частицы
- •Специальные единицы в ядерной физике
- •Методы наблюдения и регистрации элементарных частиц (домашнее задание: темы для докладов))
- •Протонно-нейтронная модель атомного ядра
- •Изотопы
- •Ядерные силы
- •Дефект масс атомного ядра
- •Энергия связи атомного ядра
- •Устойчивые и неустойчивые ядра
- •Удельная энергия связи
- •Радиоактивность
- •Закон радиоактивного распада
- •Деление атомных ядер
- •Сравнение энергетического выхода реакций горения органического топлива и реакций ядерного деления
- •Ядерные реакции
- •Реакции ядерного синтеза
- •Цепная реакция. Критическая масса
- •Ядерные реакторы
Работа силы Лоренца
М
еханическая
работа А равна скалярному произведению
силы на перемещение, которое произошло
под действием этой силы:
А = (FS) = FScosα
где α -угол между направлением силы и перемещения.
Е
сли
этот угол равен 900, работа
силы равна нулю.
Поэтому полная работа силы Лоренца всегда равна нулю
Движение заряженной частицы в магнитном поле
Введение
Виды движения материальной точки:
равномерное прямолинейное, а=0, F=0
равноускоренное, a=const,
равномерное движение по окружности,
Рассмотрим различные случаи движения заряженной частицы в магнитном поле
-
Частица влетает в магнитное поле перпендикулярно силовым линиям.
Определить направление силы Лоренца и нарисовать траекторию движения частицы.
Сила, действующая на частицу, перпендикулярна скорости, поэтому траектория движения частицы
– окружность.
Определим радиус траектории частицы
По второму закону Ньютона F = ma
равнодействующая сила - сила Лоренца,
угол α равен 90 0 F = BqVsinα = BqV
центростремительное ускорение
Подставляя F и а в уравнение 2го закона Ньютона, получаем
![]()
откуда для радиуса:
размерность радиуса – метр
Задача: в камере Вильсона получены треки α-частицы и протона. Радиусы траекторий частиц одинаковы. Сравнить скорости движения частиц.
Пояснение: α- частица – это ядро гелия. В ее состав входит 2 протона и 2 нейтрона. Поэтому заряд α – частицы в 2 раза больше заряда протона, а масса – в 4 раза.

Дано
mα
= 4 mp qα
= 2 qp Rα
= Rp Vα/Vp
- ?
Ответ: Vp=2Vα
Период обращения частицы в магнитном поле
Период обращения частицы по окружности определяется формулой (1)
радиус окружности найден (2)
п
одставляя
(2) в (1), получаем

откуда
Размерность периода

Вопрос: Как зависит период обращения частицы в магнитном поле от ее скорости?
Ответ: Период обращения частицы в магнитном поле не зависит от ее скорости
-
Частица влетает в магнитное поле под углом к силовым линиям
Выберем оси координат как показано на рисунке.
Обозначим на чертеже проекции скорости частицы на направление магнитной индукции и на ось Х
Сила Лоренца
направлена перпендикулярно чертежу, от нас
Траектория движения частицы – спираль
радиус витка спирали
-
Частица влетает в магнитное поле параллельно силовым линиям

равнодействующая сил, приложенных к частице, равна нулю => движение равномерное прямолинейное, траектория движения частицы – прямая линия.
Вопрос А. Первоначально неподвижный электрон помещен в магнитное поле с индукцией В. Описать движение электрона. Пояснить ответ.
Электрон будет оставаться в покое, потому что магнитное поле на покоющийся заряд не действует
Вопрос В. Частица движется в перекрывающихся магнитном и электрическом полях. Может ли ее движение быть равномерным прямолинейным?
Может, если векторная сумма силы Лоренца и электрической силы равна нулю. Это возможно, если поля перпендикулярны друг другу (см чертеж)
Р
ешение
Движение частицы будет равномерным
прямолинейным, если действующие на нее силы
уравновешены. Это может произойти, например,
при таком расположении полей.
Условие равновесия: FL = FE; BqV = Eq; V = B/E
