Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
все лекции 11 фин.doc
Скачиваний:
63
Добавлен:
09.12.2018
Размер:
3.01 Mб
Скачать

Ядерные реакторы

При создании ядерного реактора следует учитывать, что существуют различные варианты распада ядра урана, и большой энергетический выход дает только реакция ядерного деления, происходящая с изотопом урана-235. Вероятность того, что ядро урана – 235 поглотит нейтрон, велика лишь для медленных, или тепловых, нейтронов, то есть нейтронов, скорость которых незначительно превышает скорость молекул воздуха при комнатной температуре (примерно 2103 м/с). Энергия тепловых нейтронов не превышает 0,03 МэВ. Между тем большинство нейтронов, освобождающихся при делении ядер урана, обладают значительно большей энергией - порядка 1-2 МэВ. Их скорости при этом велики – около 107 м/с, поэтому их называют быстрыми нейтронами.

Для быстрых нейтронов вероятность захвата ядрами урана – 235 примерно в 500 раз меньше, чем для медленных. Большая часть быстрых нейтронов захватывается ядрами урана – 238 и не вызывает деления, но приводит к радиоактивному распаду с образованием плутония. Энергетический выход такой реакции мал и практически не используется. Известно, что в природной урановой руде обычно содержится 99,2% урана – 238, и только 0,7% урана – 235.

Поэтому для того, чтобы поддерживать ценную реакцию в уране -235, необходимо:

  • Обогатить природную руду изотопом урана–235, повысив его содержание до 2 - 5%.

  • Уменьшить скорости быстрых нейтронов до тепловых.

Эти приемы используются в реакторах на медленных нейтронах, в которых энергия выделяется за счет расщепления ядер урана– 235.

Вещества, которые способны уменьшать скорость движения нейтронов, называются замедлителями. Наиболее эффективно в качестве замедлителя вещество, состоящее из атомов, близких по размеру к нейтронам.

Наилучшим замедлителем нейтронов могла бы оказаться обычная вода – вещество, содержащее много атомов водорода . Однако, атомы способны захватывать нейтроны. Поэтому эффективнее использовать тяжелую воду, графит и кадмий.

В современных реакторах в качестве замедлителя (и одновременно в качестве теплоносителя) используют специально очищенную воду с добавками бора.

Способ получения энергии в реакторе на медленных нейтронах – лишь первая попытка. Вспомним, что делящийся материал (уран-235) составляет лишь 0,7% в достаточно дорогой урановой руде. А что делать с 99,3% урана – 238? Сам по себе этот материал не способен к делению. Но способен к делению плутоний – 239, полученный в результате бета – распада этого изотопа урана.

По мере «выгорания» в реакторе урана-235, плутоний начинает вносить все больший вклад в энергетический выход. Этот материал не исчерпывается до конца. Отработанные тепловые элементы обогащены плутонием, который можно сравнительно легко выделить химическим путем и переработать в новый делящийся материал высокой эффективности.

В результате появляется возможность полностью использовать весь природный уран, превращая его в плутоний. Этот процесс называется размножением ядерного горючего, а сами реакторы такого типа – реакторами – размножителями, или бридерами.

Более эффективен реактор, работающий не на медленных, а на быстрых нейтронах. Чтобы «запустить» такой реактор, нужно в качестве горючего использовать урановую руду, обогащенную ураном-235 не менее чем до 15%. В таком исходном сырье реакция деления урана-235 начинается без использования замедлителя.

Реактор на быстрых нейтронах является установкой для осуществления цепной реакции деления ядер изотопа урана – 235, и одновременно установкой для получения из широко распространенного и относительно дешевого изотопа урана-238 нового ядерного горючего, плутония – 239.

В реакторах на быстрых нейтронах возможно использовать для получения энергии не только редкий изотоп урана – 235, но и изотоп урана-238, которого в природе в 140 раз больше