
- •2. Перемещение. Скорость равномерного прямолинейного движения.
- •3. Уравнение равномерного прямолинейного движения точки, его графическое представление. Av-physics.Narod.Ru/mechanics/constant-motion.Htm
- •4. Мгновенная скорость. Сложение скоростей.
- •5. Ускорение.
- •6. Движение с постоянным ускорением. Единица ускорения.
- •7. Скорость при движении с постоянным ускорением
- •8. Уравнения движения с постоянным ускорением.
- •9. Свободное падение тел. Движение с постоянным ускорением свободного падения.
- •10. Движение тел. Поступательное движение твердого тела
- •11. Вращательное движение твердого тела.
- •12. Материальная точка. Первый закон Ньютона.
- •13. Сила
- •14. Связь между ускорением и силой. Второй закон Ньютона.
- •15. Третий закон Ньютона. Единицы массы и силы.
- •16. Понятие о системе единиц.
- •17. Инерциальные системы отсчета.
- •18. Принцип относительности в механике.
- •19. Гравитационные силы. 20. Закон всемирного тяготения.
- •21. Сила тяжести, вес и невесомость.
- •22. Деформация и силы упругости. 23. Закон Гука.
- •24. Силы трения.
- •25. Импульс материальной точки. 26. Закон сохранения импульса.
- •27. Работа ,мощность, энергия в механике (формулы, единицы измерения)
- •28. Кинетическая энергия. 29. Потенциальная энергия.
- •30. Закон сохранения энергии в механике.
- •31. Основные положения молекулярно-кинетической теории и их обоснование.
- •32. Масса молекул, относительная молекулярная масса молекул. 33. Молярная масса молекул. 34. Количество вещества. 35. Постоянная Авогадро.
- •36. Броуновское движение.
- •37. Силы взаимодействия молекул. 38. Строение газообразных веществ. 39. Строение жидких веществ. 40. Строение твердых тел.
- •41. Идеальный газ в молекулярно-кинетической теории.
- •42. Давление газа в молекулярно-кинетической теории.
- •43. Среднее значение квадрата скорости молекул идеального газа.
- •44. Вывод основного уравнения молекулярно-кинетической теории газа. 45. Вывод формулы, связывающей давление и среднюю кинетическую энергию молекул газа.
- •46. Тепловое равновесие. 47. Температура. Изменение температуры. 48. Приборы для измерения температуры.
- •49. Средняя кинетическая энергия молекул газа при тепловом равновесии.
- •50. Газы в состоянии теплового равновесия (описать опыт).
- •51. Абсолютная температура. 52. Абсолютная шкала температур. 53. Температура- мера средней кинетической энергии молекул.
- •54. Зависимость давления газа от концентрации его молекул и температуры.
- •55. Измерение скоростей молекул газа. 56. Опыт Штерна.
- •57. Вывод уравнения состояния идеального газа (уравнение Менделеева-Клайперона)
- •58. Изотермический процесс.
- •59. Изобарный процесс.
- •60. Изохорный процесс.
- •61. Испарение и конденсация.
- •62. Насыщенный пар. Давление насыщенного пара.
- •63. Зависимость давления насыщенного пара от температуры.
- •64. Кипение.
- •65. Критическая температура.
- •66. Парциальное давление. Относительная влажность. 67. Приборы для измерения относительной влажности воздуха.
- •68. Поверхностное натяжение.
- •69. Смачивание.
- •70. Капиллярные явления.
- •71. Кристаллические тела и их свойства.
- •72. Аморфные тела и их свойства.
- •73. Виды деформации твердых тел.
- •74. Диаграмма растяжения.
- •75. Пластичность и хрупкость.
18. Принцип относительности в механике.
Если все механические явления протекают одинаково в различных инерциальных системах, то уравнения движения, описывающие эти явления, не должны меняться при переходе от одной инерциальной системы к другой. Так и есть на самом деле. Ускорения одинаковы во всех инерциальных системах отсчета.
Силы зависят от расстояний между телами и их относительных скоростей. Так как расстояния и относительные скорости, согласно преобразованиям Галилея, не меняются при переходе от одной инерциальной системы отсчета к другой, то не меняются и силы
Системы отсчета, для которых выполняется закон инерции, называют инерциальными системами. Опыты Галилея показали, что Земля — инерциальная система отсчета. Но Земля — не единственная такая система. Инерциальных систем отсчета — бесчисленное множество. Например, поезд, идущий с постоянной скоростью по прямому участку пути,— тоже инерциальная система отсчета. Тело получает ускорение относительно поезда также только под действием других тел.
Вообще всякая система отсчета, движущаяся относительно какой-либо инерциальной системы (например, Земли) поступательно, равномерной прямолинейно,— также инерциальная система. Действительно, в § 28 мы видели, что в таких системах ускорения тел одинаковы; значит, тело, на которое не действуют другие тела, будет двигаться относительно таких систем отсчета без ускорения, так же как и относительно Земли.
Если какая-либо система отсчета движется относительно инерциальной системы поступательно, но не равномерно и прямолинейно, а с ускорением или же вращаясь, то такая система не может быть инерциальной. Действительно, относительно такой системы тело может иметь ускорение даже в отсутствие действия на него других тел. Например, тело, покоящееся относительно Земли, будет иметь ускорение относительно тормозящего поезда или поезда, проходящего закругление пути, хотя никакие тела это ускорение не вызывают.
Будем производить разные механические опыты в вагоне поезда, идущего равномерно по прямолинейному участку пути, а затем повторим те же опыты на стоянке или просто на земной поверхности. Будем считать, что поезд идет совершенно без толчков и что окна в поезде завешены, так что не видно, идет поезд или стоит. Пусть, например, пассажир ударит по мячу, лежащему на полу вагона, и измерит скорость, которую мяч приобретет относительно вагона, а человек, стоящий на Земле, ударит таким же образом по мячу, лежащему на Земле, и измерит скорость, полученную мячом относительно Земли. Оказывается, мячи приобретут одинаковую скорость, каждый относительно «своей» системы отсчета. Точно так же яблоко упадет с полки вагона по тому же закону относительно вагона, по которому оно падает с ветки дерева на Землю. Производя различные механические опыты в вагоне, мы не смогли бы выяснить, движется вагон относительно Земли или стоит.
Все подобные опыты и наблюдения показывают, что относительно всех инерциальных систем отсчета тела получают одинаковые ускорения при одинаковых действиях на них других тел: все инерциальные системы совершенно равноправны относительно причин ускорений. Это положение было впервые установлено Галилеем и называется по его имени принципом относительности Галилея.
Итак, когда мы говорим о скорости какого-либо тела, мы обязательно должны указать, относительно какой инерциальной системы отсчета она измерена, так как в разных инерциальных системах эта скорость будет различна, хотя бы на тело и не действовали никакие другие тела. Ускорение же тела будет одинаковым относительно всех инерциальных систем отсчета. Например, относительно вагона данное тело может иметь скорость нуль, имея относительно земли скорость 100 км/час и в то же время имея относительно системы отсчета «Солнце и звезды» скорость 30 км/сек (скорость Земли в ее движении вокруг Солнца). Но если пассажир ударил по мячу, то ускорение мяча будет одним и тем же (например, 25 м/сек2) и относительно поезда, и относительно Земли, и относительно Солнца и звезд. Поэтому говорят, что по отношению к разным инерциальным системам отсчета ускорение абсолютно, а скорость относительна.